Biomedical Engineering Reference
In-Depth Information
47. M. Adami, M. Sartore, E. Baldini et al.: “New measuring principle for LAPS
devices”, Sensors and Actuators B9 , 25 (1992)
48. M. Sartore, M. Adami, C. Nicolini et al.: “Minority carrier diffusion length
effects on light-addressable potentiometric sensor (LAPS) devices”, Sensors
and Actuators A32 , 431 (1992)
49. J.M. Libby, H.G. Wada: “Detection of Neisseria meningitidis and Yersinia
pestis with a novel silicon-based sensor”, J. Clin. Microbiol. 27 , 1456 (1989)
50. J. Briggs, P.R. Panfili: “Quantitation of DNA and protein impurities in bio-
pharmaceuticals”, Anal. Chem. 63 , 850 (1991)
51. Y. Sasaki, Y. Kanai, H. Uchida et al.: “Highly sensitive taste sensor with a
new differential LAPS method”, Sensors and Actuators B24-25 , 819 (1995)
52. A. Pecora, G. Fortunato, R. Carluccio et al.: “Hydrogenated amorphous si-
licon based light-addressable potentiometric sensor (LAPS) for hydrogen de-
tection”, Non-Crystal. Solids 164-166 , 793 (1993)
53. J.W. Parce, J.C. Owicki, K.M. Kercso et al.: “Detection of cell-affecting agents
with a silicon biosensor”, Science 246 , 243 (1989)
54. J.C. Owicki, J.W. Parce, K.M. Kercso et al.: “Continuous monitoring of
receptor-mediated changes in the metabolic rates of living cells”, Proc. Natl.
Acad.Sci.USA 87 , 4007 (1990)
55. H.M. McConnell, J.C. Owicki, J.W. Parce et al.: “The cytosensor microphysio-
meter: Biological applications of silicon technology”, Science 257 , 1906 (1992)
56. H.G. Wada, S.R. Indelicato, L. Meyer et al.: “GM-CSF triggers a rapid,
glucose dependent extracellular acidification by TF-1 cells: Evidence for so-
dium/proton antiporter and PKC mediated activation of acid production”, J.
Cell. Physiol. 154 , 129 (1993)
57. S.D.H. Chan, D.M. Antoniucci, K.S. Fok et al.: “Heregulin activation of extra-
cellular acidification in mammary carcinoma cells is associated with expression
of HER2 and HER3”, J. Biol. Chem. 270 , 22608 (1995)
58. Japanese Industrial Standard Committee: JIS K 3602, Apparatus for the Esti-
mation of Biochemical Oxygen Demand (BOD S ) with Microbial Sensor (Ja-
panese Standards Association, Tokyo, 1990)
59. I. Karube, T. Matsunaga, S. Mitsuda et al.: “Microbial electrode BOD sen-
sors”, Biotechnol. Bioeng. 19 , 1535 (1977)
60. I. Karube, S. Mitsuda, T. Matsunaga et al.: “A rapid method for estimation
of BOD by using immobilized microbial cells”, J. Ferment. Technol. 55 , 243
(1979)
61. M. Hikuma, H. Suzuki, T. Yasuda et al.: “Amperometric estimation of BOD
by using living immobilized yeasts”, Euro. J. Appl. Microbiol. Biotechnol. 8 ,
289 (1979)
62. T.C. Tan, F. Li, K.G. Neoh: “Measurement of BOD by initial rate of response
of a microbial sensor”, Sensors and Actuators B10 , 137 (1993)
63. H. Tanaka, E. Nakamura, Y. Minamiyama et al.: “BOD biosensor for secon-
dary e uent from wastewater treatment plants”, Wat. Sci. Technol. 30 , 215
(1994)
64. A. Ohki, K. Shinohara, O. Ito et al.: “A BOD sensor using Klebsiella oxytoca
AS1”, Intern. J. Environ. Anal. Chem. 56 , 261 (1994)
65. F. Li, T.C. Tan, Y.K. Lee: “Effects of pre-conditioning and microbial compo-
sition on the sensing e cacy of a BOD biosensor”, Biosens. Bioelect. 9 , 197
(1994)
Search WWH ::




Custom Search