Chemistry Reference
In-Depth Information
37. Sheng, N., Boyce, M. C., Parks, D. M., Rutledge, G. C., Ales, J. I., & Cohen, R. E.
(2004). Multiscale Micromechanical modeling of Polymer/Clay Nanocomposites and
the Effective Clay Particle. Polymer, 45(N2) , 487-506.
38. Dickie, R. A. (1980). The Mechanical Properties (Small Strains) of Multiphase Polymer
Blends. In: Polymer Blends. Ed. Paul, D. R., Newman, S. New York, San Francisko,
London, Academic Press, 1 , 397-437.
39. Ahmed, S., & Jones, F. R. (1990). A review of particulate Reinforcement Theories for
Polymer Composites. J . Mater Sci., 25(N12) , 4933-4942.
40. Balankin, A. S. (1991) . Synergetics of Deformable Body . Moscow, Publishers of Minis-
try Defence SSSR, 404p.
41. Bashorov, M. T., Kozlov, G. V., & Mikitaev, A. K. (2010). Polymers as Natural Nano-
composites: Description of Elasticity Modulus within the Frameworks of Micromechani-
cal Models. Plast . Massy, N 11 , 41-43.
42. Lipatov, Yu. S. (1980). Interfacial Phenomena in Polymers. Kiev, Naukova Dumka,
260p.
43. Yanovskii, Yu. G., Bashorov, M. T., Kozlov, G. V., & Karnet, Yu. N. (2012). Polymeric
Mediums as Natural Nanocomposites: Intercomponont Interactions Geometry. Proceed-
ings of All-Russian Conf. “Mechanics and Nanomechanics of Structurally - Complex and
Heterogeneous Mediums Achievements , Problems , Perspectives”. Moscow, IPROM,
110-117.
44. Tugov, I. I., & Shaulov, A. Yu. (1990). A Particulate-Filled Composites Elasticity Modu-
lus. Vysokomolek. Soed. B, 32(N7) , 527-529.
45. Piggott, M. R., & Leidner, Y. (1974). Microconceptions about Filled Polymers. Y. Appl .
Polymer Sci . , 18(N7) , 1619-1623.
46. Chen, Z. Y., Deutch, Y. M., & Meakin, (1984). Translational Friction Coefficient of Dif-
fusion Limited Aggregates. Y . Chem . Phys., 80(N6) , 2982-2983.
47. Kozlov, G. V., Beloshenko, V. A., & Varyukhin. V. N. (1998). Simulation of Cross-Linked
Polymers Structure as Diffusion-Limited Aggregate. Ukrainskii Fizicheskii Zhurnal,
43(N3) , 322-323.
48. Novikov, V. U., Kozlov, G. V., & Burlyan, O. Y. (2000). The Fractal Approach to Interfa-
cial Layer in Filled Polymers. Mekhanika Kompozitnykh Materialov, 36(N1) , 3-32.
49. Stanley, E. H. (1986). A Fractal Surfaces and “Termite” Model for Two-Component Ran-
dom Materials. In: Fractals in Physics. Ed. Pietronero L., Tosatti E. Amsterdam, Oxford,
New York, Tokyo, North-Holland, 463-477.
50. Bashorov, M. T., Kozlov, G. V., Zaikov, G. E., & Mikitaev, A. K. (2009). Polymers as
Natural Nanocomposites: Adhesion between Structural Components. Khimicheskaya
Fizika i Mezoskopiya, 11(N2) , 196-203.
51. Dibenedetto, A. T., & Trachte, K. L. (1970). The Brittle Fracture of Amorphous Thermo-
plastic Polymers. Y. Appl . Polymer Sci . , 14 (N1 1), 2249-2262.
52. Burya, A. I., Lipatov, Yu. S., Arlamova, N. T., & Kozlov, G. V. Patent by Useful Model
N27 199. Polymer composition. It is registered in Ukraine Patents State Resister October
25 2007.
53. Novikov, V. U., & Kozlov, G. V. (1999). Fractal Parametrization of Filled Polymers
structure. Mekhanika Kompozitnykh Materialov, 35 (N3 ), 269-290.
54. Potapov, A. A. (2008). A Nanosystems Design Principles Nano- i Mikrosistemnaya
Tekhnika, 3(N4) , 277-280.
Search WWH ::




Custom Search