Biology Reference
In-Depth Information
74. Neff CP et al (2011) An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects
from helper CD4(+) T cell decline in humanized mice. Sci Transl Med 3:66ra66
75. Wheeler LA et al (2011) Inhibition of HIV transmission in human cervicovaginal explants and
humanized mice using CD4 aptamer-siRNA chimeras. J Clin Invest 121:2401-2412
76. Shi H, Hoffman BE, Lis JT (1999) RNA aptamers as effective protein antagonists in a multi-
cellular organism. Proc Natl Acad Sci USA 96:10033-10038
77. Santulli-Marotto S, Nair SK, Rusconi C, Sullenger B, Gilboa E (2003) Multivalent RNA
aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res 63:7483-7489
78. McNamara JO et al (2008) Multivalent 4-1BB binding aptamers costimulate CD8+ T cells and
inhibit tumor growth in mice. J Clin Invest 118:376-386
79. Dollins CM et al (2008) Assembling OX40 aptamers on a molecular scaffold to create a recep-
tor-activating aptamer. Chem Biol 15:675-682
80. Wullner U, Neef I, Eller A, Kleines M, Tur MK, Barth S (2008) Cell-specific induction of
apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic
elongation factor 2. Curr Cancer Drug Targets 8:554-565
81. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833-842
82. De Rosa G, La Rotonda MI (2009) Nano and microtechnologies for the delivery of oligonucle-
otides with gene silencing properties. Molecules 14:2801-2823
83. Kim S, Kim JH, Jeon O, Kwon IC, Park K (2009) Engineered polymers for advanced drug
delivery. Eur J Pharm Biopharm 71:420-430
84. Tan W et al (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29:634-640
85. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer
chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent
smancs. Cancer Res 46:6387-6392
86. Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid
tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15:457-464
87. Guo P (2005) RNA nanotechnology: engineering, assembly and applications in detection, gene
delivery and therapy. J Nanosci Nanotechnol 5:1964-1982
88. Shu D, Huang LP, Hoeprich S, Guo P (2003) Construction of phi29 DNA-packaging RNA
monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanode-
vices. J Nanosci Nanotechnol 3:295-302
89. Guo P et al (2010) Engineering RNA for targeted siRNA delivery and medical application.
Adv Drug Deliv Rev 62:650-666
90. Shu Y, Cinier M, Shu D, Guo P (2011) Assembly of multifunctional phi29 pRNA nanoparticles
for specific delivery of siRNA and other therapeutics to targeted cells. Methods
54(2):204-214
91. Guo S, Tschammer N, Mohammed S, Guo P (2005) Specific delivery of therapeutic RNAs to
cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther
16:1097-1109
92. Hoeprich S, Guo P (2002) Computer modeling of three-dimensional structure of DNA-
packaging RNA (pRNA) monomer, dimer, and hexamer of Phi29 DNA packaging motor.
J Biol Chem 277:20794-20803
93. Kim E et al (2010) Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA
and doxorubicin using an aptamer-conjugated polyplex. Biomaterials 31:4592-4599
94. Zhao N, Bagaria HG, Wong MS, Zu Y (2011) A nanocomplex that is both tumor cell-selective
and cancer gene-specific for anaplastic large cell lymphoma. J Nanobiotechnology 9:2
95. Zhang P et al (2009) Using an RNA aptamer probe for flow cytometry detection of CD30-
expressing lymphoma cells. Lab Invest 89:1423-1432
96. Duyster J, Bai RY, Morris SW (2001) Translocations involving anaplastic lymphoma kinase
(ALK). Oncogene 20:5623-5637
Search WWH ::




Custom Search