Biomedical Engineering Reference
In-Depth Information
environmental, occupational and therapeutic doses. The technology for producing
microbeam sources is rapidly changing allowing finer resolution beams and more
optimal integration with cell imaging approaches. This will allow high throughput
approaches where biological changes occur at low frequency in response to low dose
exposures of relevance to radiation risk studies. Future advances in biology with the
impact of live cell imaging approaches will allow DNA damage processing to be
carefully mapped in real-time. A major challenge is to gain further insights into
subcellular radiosensitivity mechanisms by probing at the nuclear and non-nuclear
levels in both cell and tissue models. These studies need to consider both spatial
and temporal aspects following responses in cells through to functional biological
changes. A future advance will be to translate these approaches into in vivo models
to understand the responses of these particularly to low dose exposure. These studies
will also impact on our understanding of the effectiveness of advanced radiotherapy
approaches where highly modulated spatial and temporal beams are delivered.
Acknowledgment The authors are grateful to Cancer Research UK [CUK] grant number
C1513/A7047 and the European Union NOTE project (FI6R 036465) for funding their work.
References
1. G. Schettino, S.T. Al Rashid, K.M. Prise, Mutat Res 704 (2010) 68-77
2. D.J. Brenner, R.C. Miller, Y. Huang, E.J. Hall, Radiat. Res. 142 (1995) 61-69
3. M.A. Kadhim, S.A. Lorimore, K.M. Townsend, D.T. Goodhead, V.J. Buckle, E.G. Wright,
International Journal of Radiation Biology 67 (1995) 287-293
4. B. Marples, M.C. Joiner, Radiation Research 133 (1993) 41-51
5. K.M. Prise, G. Schettino, M. Folkard, K.D. Held, Lancet Oncol 6 (2005) 520-528
6. K.M. Prise, J.M. O'Sullivan, Nat Rev Cancer 9 (2009) 351-360
7. D.R. Boreham, J.-A. Dolling, J. Broome, S.R. Maves, B.P. Smith, R.E.J. Mitchel, Radiation
Research 153 (2000) 230-231
8. R.C. Miller, G. Randers-Pehrson, C.R. Geard, E.J. Hall, D.J. Brenner, Proc Natl Acad Sci USA
96 (1999) 19-22
9. K.M. Prise, M. Folkard, A.M. Malcolmson, C.H. Pullar, G. Schettino, A.G. Bowey, B.D.
Michael, Adv Space Res 25 (2000) 2095-2101
10. M.A. Kadhim, S.J. Marsden, D.T. Goodhead, A.M. Malcolmson, M. Folkard, K.M. Prise, B.D.
Michael, Radiat Res 155 (2001) 122-126
11. S. Chahotin, Biol Zent. 32 (1912) 623
12. S. Gerardi, J. Radiat Res 50 (2010) A15-A30
13. R.E. Zirkle, W. Bloom, Science 117 (1953) 487-493
14. M. Folkard, K.M. Prise, G. Schettino, C. Shao, S. Gilchrist, B. Vojnovic, Nuclear Instruments
and Methods B 231 (2005) 189-194
15. G.
Randers-Pehrson,
C.
Geard,
G.
Johnson,
D.
Brenner,
Radiation
Research
153
(2000) 221-223
16. Y. Kobayashi, T. Funayama, S. Wada, Y. Furusawa, M. Aoki, C. Shao, Y. Yokota, T. Sakashita,
Y. Matsumoto, T. Kakizaki, N. Hamada, Biol Sci Space 18 (2004) 235-240
17. S. Gerardi, G. Galeazzi, R. Cherubini, Radiat Res 164 (2005) 586-590
18. A. Hauptner, S. Dietzel, G.A. Drexler, P. Reichart, R. Krucken, T. Cremer, A.A. Friedl, G.
Dollinger, Radiat Environ Biophys 42 (2004) 237-245
Search WWH ::




Custom Search