Biomedical Engineering Reference
In-Depth Information
section 22.3.2 showed good agreement with in vitro PCC data on simple exchanges
induced in human lymphocytes exposed to Carbon and Iron ions. This provided
further support for the main assumption of the model, i.e. that aberrations arise from
clustered, and thus severe, double-helix breaks. In progress for this model is also the
implementation of chromosome aberration processing at mitosis, which determines
whether the cell will fail duplication or it will be able to duplicate possibly giving
rise to aberrated daughter cells. This is a key issue in radiobiology because on one
side the duplication of aberrated cells implies an enhanced risk for normal tissue
with possible consequences in terms of radiation protection, whereas on the other
side the death of (tumour) cells is the main goal for radiotherapy.
Acknowledgements This work was partially supported by EU (“RISC-RAD” project, Contract
no. FI6R-CT-2003-508842, and “NOTE” project, Contract no. FI6R-036465) and ASI (Italian
Space Agency, “Mo-Ma/COUNT” project).
References
1. Savage J, Simpson P, Mutat Res 312 , 51-60 (1994)
2. Durante M, Furusawa Y, Gotoh E, Int J Radiat Biol 74 , 457-462 (1998)
3. Pinkel D, Straume T, Gray J., Proc Natl Acad Sci USA 83 , 2934-2938 (1986)
4. Cornforth M, Radiat Res 155 , 643-659 (2001)
5. Anderson R, Stevens D, Goodhead D, Proc Natl Acad Sci USA 99 , 12167-12172 (2002)
6. Mitelman F, Mutat Res 462 , 247-253 (2000)
7. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A, Cell 66 , 675-684 (1991)
8. Faretta MR, Di Croce L, Pelicci PG, Seminars in Hematology 38 , 42-53 (2001)
9. Bonassi S, Hagmar L, Stromberg U, Huici Montagud A, Tinnerberg H, Forni A, Heikkila P,
Wanders S, Norppa H, for the European Study Group on Cytogenetic Biomarkers and Health
(ESCH), Cancer Res 60 , 1619-1625 (2000)
10. Durante M, Radiat Res 164 , 467-473 (2005)
11. Bauchinger M, Schmid E, Braselmann H, Int J Radiat Biol 77 , 553-557 (2001)
12. Sakamoto-Hojo E, Natarajan AT, Curado MP, Radiat Prot Dosim 86 , 25-32 (1999)
13. Kanda R, Minamihisamatsu M, Hayata I, Int J Radiat Biol 78 , 857-862 (2002)
14. Hsieh W, Lucas JN, Hwang JJ, Chan CC, Chang WP, Int J Radiat Biol 77 , 797-804 (2001)
15. Lindholm C, Tekkel M, Veidebaum T et al, Int J Radiat Biol 74 , 565-571 (1998)
16. Lloyd D, Moquet JE, Oram S, Edwards AA, Lucas JN, Int J Radiat Biol 73 , 543-547 (1998)
17. Johnson K, Nath J et al., Mutat Res 439 , 77-85 (1999)
18. Snigiryova G, Braselmann H, Salassidis K et al, Int J Radiat Biol 71 , 119-127 (1997)
19. Stephan G, Pressl S, Int J Radiat Biol 71 , 293-299 (1997)
20. Stram D, Sposto R et al, Radiat Res 136 , 29-36 (1993)
21. Nakano M, Kodama Y et al, Int J Radiat Biol 77 , 971-977 (2001)
22. George K, Durante M, Wu H, Willingham V, Badhwar G, Cucinotta F, Radiat Res 156 ,
731-738 (2001)
23. Yang T, George K, Johnson AS, Durante M, Fedorenko BS, Biodosimetry results from space
flight MIR-18 Radiat Res 148 , S17-S23 (1997)
24. Obe G, Johannes I, Johannes C, Hallman K, Reiz G, Facius R, Int J Radiat Biol 72 ,
727-734 (1997)
25. Testard I, Ricoul M, Hoffschir F, Flury-Herard A, Dutrillaux B, Fedorenko B, Gerasimenko V,
Sabatier L, Int J Radiat Biol 70 , 403-411 (1996)
Search WWH ::




Custom Search