Biomedical Engineering Reference
In-Depth Information
dose (only valid for macroscopic volumes) but also in terms of induced molecular
alterations, which is more realistic to characterise details at the nano-scale.
In this example the last few collisions of a positron, which had an initial energy
of 10 keV, are followed as it slows from around 700 eV on entering the frame on the
left. This program thus allows one to not only follow the positron through its path to
thermalisation and annihilation but also importantly tracks the wake of the copious
numbers of secondary electrons that are produced during the thermalisation process.
14.7
Conclusions and future plans
The work described here represents initial, but significant, steps towards a descrip-
tion of positron transport in soft condensed matter, with a view to better informing
processes such as Positron Emission Tomography and, ultimately, Positron Dosime-
try in the body.
Work is presently underway on developing cross sections sets for both positrons
and electrons in a range of other biologically important molecules such as the DNA
and RNA bases and the amino acids.
References
1. J.P. Sullivan, A. Jones, P. Caradonna, C. Makochekanwa, S.J. Buckman Rev. Sci. Inst. 79
113105 (2008)
2. I. Toth, R.I. Campeanu, V. Chis, L Nagy 2010 J. Phys.: Conf. Ser. 199 , 012018
3. Y. Itikawa, N. Mason, J. Phys. Chem. Ref. Data 34 (1), 1 (2005)
4. L. G. H. Huxley, R. W. Crompton, The Drift and Diffusion of Electrons in Gases (Wiley,
New York, 1974)
5. R.E. Robson, Introductory transport theory for charged particles in gases , (World Scientific
Publishing, Singapore, 2006)
6. Z Lj Petrovic, S Dujko, D Maric, G Malovic, Z Nikitovic, O Sasic, J Jovanovic, V Stojanovic,
M Radmilovic-Radenovic, J. Phys. D: Appl. Phys. 42 , 194002 (2009)
7. B. Cheung, M. T. Elford, Aust. J. Phys. 43 (6), 755 (1990)
8. M. T. Elford, Aust. J. Phys. 48 , 427 (1995)
9. H. Hasegawa, H. Date, M. Shimozuma, J. Phys. D 40 (8), 2495 (2007)
10. R. E. Robson, R. D. White, K. F. Ness, J. Chem. Phys. 134 , 064319 (2011)
11. K.F. Ness, R.E. Robson, M.J. Brunger and R.D. White, J. Chem. Phys. (submitted)
12. M. Charlton, J. Phys.: Conf. Ser. 162 , 012003 (2009)
13. Z. Lj. Petrovic, A. Bankovic, S. Dujko, S. Marjanovic, M. Suvakov, G. Malovic, J. P. Marler,
S. J. Buckman, R. D. White, R. E. Robson, J. Phys.: Conf. Ser. 199 , 012016 (2010)
14. M. Suvakov, Z. Lj. Petrovic, J. P. Marler, S. J. Buckman, R. E. Robson, G. Malovic, New J.
Phys. 10 , 053034 (2008)
15. A. Bankovic, J. P. Marler, M. Suvakov, G. Malovic, Z. Lj. Petrovic, Nuclear Inst. Methods B,
266 , 462-465 (2008)
16. A. Bankovic, S. Dujko, J.P. Marler, G. Malovic, R.D. White, S.J. Buckman, Z. Lj. Petrovic, in
preparation
17. R.D. White, R.E. Robson, S. Dujko, P. Nicoletopoulos, B. Li, J. Phys. D 42 , 194001 (2009)
Search WWH ::




Custom Search