Biomedical Engineering Reference
In-Depth Information
interest to the nano-scale, it is obvious that absorbed dose is not a good quantity
to describe radiation effects (see the absorbed dose values in Table 13.1 ). However
the level of detail given by our LEPTS model allows us to develop new tools for
nanodosimetry, based on the number of ionisation events or, even more properly, the
number of molecular dissociations induced in the nano-volume. Note that for this
example we are only showing the total number of ionisations, but this simulation
also gives the number and type of ionic fragments produced which together with the
information on neutral dissociation and dissociative electron attachment will allow
us to characterise radiation effects in terms of structural molecular alterations.
Acknowledgments Work presented in this contribution has been partially supported by the
following projects and institutions: Ministerio de Ciencia e Innovaci on (Project FIS2009-10245),
EU Framework Programme (COST Action MP1002) and the Australian Research Council through
its Centres of Excellence program.
References
1. R.R. Wilson Phys. Rev. 86 , 261-269 (1952)
2. J.C. Butcher, H. Messel, Phys Rev 112 , 2096-2106 (1958)
3. J.C. Butcher, H. Messel Electron number distribution in electron-photon showers in air and
aluminium absorbers. Nucl Phys 20 , 15-128, (1960)
4. A.A. Varfolomeev, I.A. Svetlolobov, Sov Phys JETP 36 , 1263-1270 (1959)
5. C.D. Zerby, H.S. Moran, A Monte Carlo calculation of the three-dimensional development of
high-energy electron-photon cascade showers . Report ORNL-TM-422, Oak Ridge Natinoal
Laboratory (Oak Ridge, Tennessee, 1962)
6. C.D. Zerby, H.S. Moran, J Appl Phys 34 , 2445-2457 (1963)
7. H.H. Nagel, Die Berechnung von Elektron-Photon-Kaskaden in Blei mit Hilfe der Monte-Carlo
Methode . Dissertation (Rheinische Friedrich-Wilhelms-Universitat, 1964)
8. H.H. Nagel, Z Phys 186 , 319-346 (1965)
9. M.J. Berger, Monte Carlo calculation of the penetration and diffusion of fast charged particles.
In: B. Alder, S. Fernbach, M. Rotenberg (ed) Methods in Computational Physics ,vol1
(Academic, New York, 1963)
10. I. Kawrakow, M. Fippel, Phys Med Biol 45 , 2163 (2000)
11. I. Kawrakow, E. Mainegra-Hing, D.W.O. Rogers, F. Tessier, B.R.B. Walters, The EGSnrc Code
System: Monte Carlo Simulation of Electron and Photon Transport . Technical report PIRS-
701, National Research Council of Canada (Ottawa, 2000)
12. M.J. Berger, S.M. Seltzer, Phys Rev C 2 , 621-631 (1970)
13. M.J. Berger, S.M. Seltzer, ETRAN Monte Carlo code system for electron and photon transport
through extended media . RSIC Report CCC-107, Oak Ridge National Laboratory (Oak
Ridge, 1973)
14. J. Bar o, J. Sempau, J.M. Fernandez-Varea, F. Salvat, Nucl Instrum Meth Phys Res B 100 ,
31-46 (1995)
15. F. Salvat, J.M. Fernandez-Varea, J. Sempau, PENELOPE. A code system for Monte Carlo
simulation of electron and photon transport . OECD-Nuclear Energy Agency (2003)
16. A. Munoz, J.M. Perez, G. Garc´ıa,F.Blanco,NuclInstrumMethA 536 , 176-188 (2005)
17. M.C.
Fuss,
A.
Munoz,
J.C.
Oller,
F.
Blanco,
M.-J.
Hubin-Franskin,
D.
Almeida,
P. L i m ao-Vieira, G. Garcıa, Chem Phys Lett 486 , 110-115 (2010)
18. S. Agostinelli et al., Nucl. Instrum. Meth. Phys. Res. A, 506 (3), 250-303 (2003)
Search WWH ::




Custom Search