Chemistry Reference
In-Depth Information
drug-like bioisosteric groups. Journal of Chemical Information and Computer Sciences ,
2003, 43:374-380.
[15]
Bohacek RS, McMartin C, Guida WC. The art and practice of structure-based drug design:
A molecular modeling perspective. Medicinal Research Reviews,1996,16:03-50.
[16]
Weininger D. In: Encyclopedia of Computational Chemistry ; Schleyer PVR, Allinger N L,
Clark T, Gasteiger J, Kollman PA, Schaefer III HF, Schreiner PR. Eds.; John Wiley &
Sons: Chichester, UK, 1998,1: 425-430.
[17]
Corkery JJ, Skillman AG, Schmidt KE, Kelley B. Visualization and analysis of bioisosteric
analogs generated with BROOD. In: 239 th ACS National Meeting, 2010, San Francisco,
CA, United States. Proceedings. American Chemical Society.
[18]
Popelier PLA, Smith PJ. QSAR models based on quantum topological molecular similarity.
European Journal of Medicinal Chemistry, 2006, 41: 862-873.
[19]
Nicholls A, Maccuish NE, Maccuish JD. Variable selection and model validation of 2D and
3D molecular descriptors. Journal of Computer-Aided Molecular Design, 2004, 18:7-9.
[20]
Hopfinger AJ, Wang S, Tokarsk JS, Jin BQ, Albuquerque M, Madhav PJ, Duraiswam C.
Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. Journal of the
American Chemical Society, 1997, 119:10509-10524.
[21]
Pastor M, Cruciani G, Mclay I, Pickett S, Clementi S. GRid-INdependent descriptors
(GRIND): A novel class of alignment independent three-dimensional molecular descriptors.
Journal of Medicinal Chemistry,2000, 43:3233-3243.
[22]
Silverman BD, Platt DE. Comparative molecular moment analysis (CoMMA): 3D-QSAR
without molecular superposition. Journal of Medicinal Chemistry, 1996, 39:2129-2140.
[23]
Oprea TI. (Ed). Chemoinformatics in Drug Discovery. Methods and Principles in Medicinal
Chemistry: WILEY-VCH, v.23, p.490, Methods and Principles in Medicinal Chemistryed.
2005.
[24]
SYBYL. SYBYL-X 1.2, Tripos International, 1699 South Hanley Rd., St. Louis, Missouri,
63144, USA. 2010.
[25]
Nicolaou CA, Apostlolakis J, Pattichis, C. S. De novo drug design using multiobjective
evolutionary graphs. Journal of Chemical Information and Modeling, 2009, 49:295-307.
[26]
DeschĂȘnes A, Sourial E. Ligand Scaffold replacement using MOE pharmacophore tools.
Chemical
Computing
Group
Inc. ,
2007.
Avaliable
at:
http://www.chemcomp.com/journal/scaffold.htm
[27] Hu Y, Bajorath J. Global assessment of scaffold hopping potential for current
pharmaceutical targets. Medchemcomm, 2010,1: 339-344.
[28]
Tung YS, Coumar MS, Wu YS, Shiao HY, Chang JY, Liou JP, Shukla P, Chang CW,
Chang CY, Ku CC, Yeh TK, Lin CY, Wu JS, Wu SY, Liao CC, Hsieh HP. Scaffold-
hopping strategy: synthesis and biological evaluation of 5,6-fused bicyclic heteroaromatics
to identify orally bioavailable anticancer agents. Journal of Medicinal Chemistry, 2011,
54:3076-3080.
[29]
Bergmann R.; Linusson A. Zamora I. SHOP: Scaffold HOPping by GRID-based similarity
searches. Journal of Medicinal Chemistry, 2007, 50: 2708-2717.
[30]
Rush TS, Grant JA, Mosyak L, Nicholls A. A shape-based 3-D scaffold hopping method
and its application to a bacterial protein-protein interaction. Journal of Medicinal
Chemistry, 2005, 48: 1489-1495.
[31]
Lopez-Ramos M, Perruccio F. HPPD: ligand- and target-based virtual screening on a
herbicide target. Journal of Chemical Information and Modeling, 2010,50:801-814.
Search WWH ::




Custom Search