Chemistry Reference
In-Depth Information
[614] Kumar S, Payne PW, Vasquez M. J. Method for free-energy calculations using iterative
techniques. J. Comput. Chem. 1996,17:1269-1275.
[615] Michel J, Verdonk ML and Essex JW. Protein-ligand complexes: Computation of the
relative free energy of different scaffolds and binding modes. J. Chem. Theory and
Computation. 2007, 3:1645-1655.
[616] Hansmann UHE. Parallel tempering algorithm for conformational studies of biological
molecules. Chem. Phys. Lett. 1997, 281:140-150.
[617] Faloppe N, Hubbard R. Towards predictive Ligand design with free-energy based
computational methods? Curr. Med. Chem. 2006, 13:3583-3608.
[618] Ashbaugh HS, Asthagiri D. Single ion hydration free energies: A consistent comparison
between experiment and classical molecular simulation. J. Chem. Phys. 2008, 129: 204501-
204506.
[619] Guo Z, Brooks CL III, Kong X. Efficient and flexible algorithm for free energy calculations
using the λ-dynamics approach. J. Phys. Chem. B 1998, 102:2032-2036.
[620] Biletti-Putzer R, Yang W, Karplus M. Generalized ensembles serve to improve the
convergence of free energy simulations. Chem. Phys. Lett. 2003, 377:693-641.
[621] Damodaran KV, Banba S, Brooks CL III. Application of multiple topology λ-dynamics to a
host-guest system β-Cyclodextrin with substituted benzenes. J. Phys. Chem. B. 2001,
105:9316-9322.
[622] Banba S, Brooks CL III. Free energy screening of small ligands bindng to an artificial
protein cavity. J. Chem. Phys. 2000, 113:3423-3433.
[623] Brooks BR, Bruccoleri RE, Olafson BD, Sates DJ, Swaminuthan S, Karplus M.
CHARMM:a program for macromolecular energy, minimization and dynamics calculations
J. Comp. Chem. 1983, 4:187-217.
[624] Pitera J, Kollman PA. Designing an optimum guest for a host using mutimolecule free
energy calculations: Predicting the best. J. Am Chem. Soc. 1998, 120:7557-7567.
[625] Guo Z, Brooks CL III. Rapid screening of binding affinities:Application of the λ-dynamics
method to a trypsin-inhibitor system. J. Am. Chem. Soc. 1998,120:1920-1921.
[626] Zoete V, Michielin O, Karplus M. Protein-ligand binding free energy estimation using
molecular mechanics and continmuum electrostatics. Application to HIV-1 protease
inhibitors. J. Comput.-Aided Mol. Des. 2003,17:861-880.
[627] Wu D, Kofke DA, Phase-space overlap measures. II. Design and implementation of staging
methods for free-energy calculations. J. Chem. Phys. 2005,126293:84109-84110.
[628] Mobley DL, Graves AP, Chodera JD, McReynolds AC, Stoichet BK and Dill KA.
Predicting absolute ligand binding free energies to a simple model site. J. Mol. Biol.
2007,371:1118-1134.
[629] Pearlman DA, Koffman PA. The lag between the Hamiltonian and the system configuration
in free energy perturbation calculations. J. Chem. Phys. 1989, 91:7831-7839.
[630] Lee MS, Salsbury FR, Brooks CL. Constant-pH molecular dynamics using continuous
titration coordinates. Proteins 2004;56:738-752.
[631] Abrams JB, Rosso L, Tuckerman ME. Efficient and precise solvation free energies via
alchemical adiabatic molecular dynamics. J. Chem. Phys. 2006;125;74115-74127.
[632] Stock G, Jain A, Riccardi L, Nguyen PI, Conformational Analysis of Unfolded States.
Exploring the Energy Landscape of Small Peptides and Proteins by Molecular Dynamics
Simulations. Gerhard Stock, Abhinav Jain, Laura Riccardi, Phuong H Nguyen. Edited by
Search WWH ::




Custom Search