Chemistry Reference
In-Depth Information
Identification of ligands of the integral membrane enzyme DsbB. Chem Biol 2010, 17:881-
891.
[221] Bamborough P, Brown MJ, Christopher JA, Chung CW, Mellor GW. Selectivity of kinase
inhibitor fragments. J Med Chem 2011, 54:5131-5143.
[222] Babaoglu K, Shoichet BK. Deconstructing fragment-based inhibitor discovery. Nat Chem
Biol 2006,2:720-723.
[223] Warr WA. Fragment-based drug discovery: What really works. An interview with Sandy
Farmer of Boehringer Ingelheim. J Comput Aided Mol Des 2011,25:599-605.
[224] Desjarlais RL. Using computational techniques in fragment-based drug discovery. Methods
Enzymol 2011, 493:137-155.
[225] Gozalbes R, Carbajo RJ, Pineda-Lucena A. Contributions of computational chemistry and
biophysical techniques to fragment-based drug discovery. Curr Med Chem 2010,17:1769-
1794.
[226] Hoffer L, Renaud JP, Horvath D. Fragment-based drug design: Computational &
experimental state of the art. Comb Chem High Throughput Screen 2011, 14:500-520.
[227] Hubbard RE, Chen I, Davis B. Informatics and modeling challenges in fragment-based
drug discovery.Curr Opin Drug Discov Devel 2007,10:289-297.
[228] Law R, Barker O, Barker JJ, Hesterkamp T, Godemann R, Andersen O, Fryatt T, Courtney
S, Hallett D, Whittaker M. The multiple roles of computational chemistry in fragment-
based drug design. J Comput Aided Mol Des 2009,23:459-473.
[229] Vangrevelinghe E, Rudisser S. Computational approaches for fragment optimization. Curr
Comput-Aided Drug Design 2007, 3:69-83.
[230] Houston DR and Walkinshaw MD, Consensus Docking:Improving the reliability of ocking
in a virtual screening context, J. Chem. Inf. And Modeling, 2013,53: 384-290.
[231] Badrinarayan P, Sastry GN, Virtual high throughput screening in new lead identification.
Comb. Chem. High throughput Screeen. 2011,14:840-860.
[232] Langdon SR, Ertl P and Brown N, Bioisosteric replacement and scaffold hopping in lead
generation and optimization, Mol. Inf. 2010, 29: 366-385.
[233] Devereux M and Popelier PLA, In silico techniques for the identification of bioisosteric
replacements for drug design, Current Topics in medicinal chemistry, 2010, 10: 657- 668.
[234] Devereux M, Popelier PLA, McLay IM. Toward an Ab initio fragment database for
bioisosterism: dependence of QCT properties on level of theory, conformation, and
chemical environment. J. Comp. Chem., 2009, 30: 1300-1318.
[235] Devereux M, Popelier PA, McLay IM. A refined model for prediction of hydrogen bond
acidity and basicity parameters from quantum chemical molecular descriptors. Phys.Chem.
Chem. Phys., 2009, 11: 1595-1603.
[236] Wagener M. Lommerse JPM. The quest for bioisosteric replacements. J. Chem. Inf.
Model., 2006, 46: 677-685.
[237] Toropov AA, Toropova AP, Benfenati E, Leszczynska D, Leszczynski J. SMILES-based
optimal descriptors: QSAR analysis of fullerene-based HIV-1 PR inhibitors by means of
balance of correlations. J. Comp. Chem., 2010, 31: 381-92.
[238] Karelson M, Lobanov VS, Katritzky AR. Quantum-chemical descriptors in QSAR/QSPR
studies. Chem. Rev., 1996, 96: 1027-1043.
[239] Kortagere S, Krasowski MD and Ekins S. The importance of discerning shape in molecular
pharmacology. Trends in Pharmacological Sciences. 2009,30:138-147
Search WWH ::




Custom Search