Database Reference
In-Depth Information
z S G h ( x , z )=
z 2
G h (
x
,
z 1 )+
G h (
x
,
z 2 )
z 1 S N
S
N
)
Because
1
1
|
y 1
) |
z 1
LDT
(
x
,
O
,
S
)=
G h (
x
,
y 1
)
G h (
x
,
z 1
)
|
| (
h
O
h
S
O
N
S
N
Equation 4.10 can be rewritten as
DT
(
x
,
O
,
S
)
LDT
(
x
,
O
,
S
)
1
(4.11)
1
h | O |
y 2 (
|
z 2 (
=
G h (
x
,
y 2 )
G h (
x
,
z 2 )
|
h
S
O
N
)
S
N
)
According to the definition of local neighborhood, d
(
x
,
y 2 ) > σ
holds for any y 2
(
O
N
)
, and
|
O
|>|
O
N
|
. Thus,
1
h 2
e σ 2
1
|
y 2 ( O N )
0
<
G h (
x
,
y 2 ) <
2 h 2
h
|
O
π
Similarly, d
(
x
,
z 2 ) > σ
holds for any z 2 (
S
N
)
, and
|
S
|>|
S
N
|
. Thus,
1
1
h 2
e σ 2
|
z 2 (
0
<
G h (
x
,
z 2 )) <
2 h 2
h
|
S
π
S
N
)
Therefore,
1
1
2
e σ 2
y 2 ( O N )
|
z 2 ( S N )
1
|
G h (
x
,
y 2 )
G h (
x
,
z 2 ) |<
2 h 2
(4.12)
h
|
O
|
h
|
S
π
Inequality 4.9 follows from Inequality 4.11 and 4.12 immediately.
Applying Inequality 4.9 to o and
o ,wehave
e σ 2
1
h 2
|
DT
(
o
,
O
,
S
)
LDT
(
o
,
O
,
S
) |<
2 h 2
π
and
1
h 2
e σ 2
|
DT
(
o
,
O
,
S
)
LDT
(
o
,
O
,
S
) |<
2 h 2
π
(
Since LDT
o
,
O
,
S
O
)
LDT
(
o
,
O
,
S
O
)
,wehave
DT
(
o
,
O
,
S
)
DT
( o
,
O
,
S
)= (
DT
(
o
,
O
,
S
)
LDT
(
o
,
O
,
S
))
(
DT
(
o
,
O
,
S
)
LDT
(
o
,
O
,
S
)) +(
LDT
(
o
,
O
,
S
)
LDT
(
o
,
O
,
S
))
e σ 2
2
h 2 π
<
2 h 2
Inequality 4.8 is proved.
Search WWH ::




Custom Search