Database Reference
In-Depth Information
t' j
t' j+x
t' j
...
O'
O'
￿
￿
￿
￿
￿
￿
￿
￿
￿
￿￿￿
t i
t i+1
t i+2
t i
t i+1
t i+2
O
O
￿￿￿
￿￿￿
￿￿￿
￿￿￿
￿￿￿
￿￿￿
L i+1 U i+2
U
L i U i+1
L
U
L i U i+1
L i+1 U i+2
L
i
i+2
i
i+2
(b) Case 2.
(a) Case 1.
Fig. 6.3 Two cases in the proof of Theorem 6.7.
Lemma 6.3 (Monotonicity). Let t i ,t i + 1 and t i + 2 be three consecutive intervals in
the
Pr k
Pr k
φ
-quantile summary of W
(
O
)
. Let
L (
(
t i ))
and
U (
(
t i + 2 ))
be the lower
bound of Pr k
and the upper bounds of Pr k
(
t i )
(
t i + 2 )
, respectively, derived from
Theorem 6.6. If for any interval t in the
-quantile summary of O (
O =
φ
O
)
,
t .
MIN, t .
Pr k
Pr k
MAX
>
t i .
MIN
>
t i + 2 .
MAX, then
L (
(
t i )) ≥U (
(
t i + 2 ))
.
t |
t
O ,
t .
Proof. For intervals t i and t i + 2 ,wehave LDS
(
t i )= {
MAX
>
t i .
MIN
}
,
t |
t
O ,
t .
and UDS
(
t i + 2 )= {
MIN
t i + 2 .
MAX
}
. Using the assumption in the
Pr k
Pr k
lemma, we have LDS
(
t i )
UDS
(
t i + 2 )
. Thus,
L (
(
t i )) ≥U (
(
t i + 2 ))
.
We consider the following two cases:
Case 1. For any interval t
and t
O )(
O =
,if t .
W
(
O
)
W
(
O
)
MAX
>
t
.
MAX ,
then t .
MIN , as illustrated in Figure 6.3(a). Lemma 6.3 holds in this case.
According to the definitions of
MIN
>
t
.
Pr k
Pr k
Pr k
U (
(
O
))
and
L (
(
O
))
,
U (
(
O
)) =
1
i
1
Pr k
Pr k
i
Pr k
U (
(
t i
))
and
L (
(
O
)) =
L (
(
t i
))
. Thus,
=
1
=
1
Pr k
Pr k
U (
(
O
)) −L (
(
O
))
1
φ
i = 1 U ( Pr k
2
Pr k
Pr k
=
(
)) −L (
(
))
+ U (
(
))
(6.2)
t i + 2
t i
t 1
Pr k
Pr k
Pr k
+ U (
(
)) −L (
(
)) −L (
(
φ ))
t 2
t 1
φ
t 1
1
Using Lemma 6.3, we have
i = 1 U (
t i )) <
1
φ
2
Pr k
Pr k
(
t i + 2 )) −L (
(
0.
Thus, we have
Pr k
Pr k
U (
(
O
)) −L (
(
O
))
(6.3)
< U ( Pr k
Pr k
Pr k
Pr k
(
t 1
))+ U (
(
t 2
)) −L (
(
t 1
φ
)) −L (
(
t 1
φ ))
1
1
φ
Also, for 1
i
, Pr
(
t i )=φ
and
Pr k
Pr k
≤U (
(
))
(
)
≤L (
(
))
(
)
0
t i
Pr
t i
and 0
t i
Pr
t i
.
Thus, we have
U ( Pr k
Pr k
Pr k
Pr k
(
t 1 ))+ U (
(
t 2 )) −L (
(
t 1
φ
1 )) −L (
(
t 1
φ ))
2
φ
(6.4)
Plugging Inequalities 6.3 and 6.4 into Equation 6.2, we get
 
Search WWH ::




Custom Search