Environmental Engineering Reference
In-Depth Information
surface, (c) more carbonyl groups that provide more sites for the donor-accepter
interactions, and (d) creation of more smaller micropores in the pore structure (Su et al.,
2005).
Table 11.6 Pore structure parameters of porous carbons.
Samples
S BET a
(m 2 /g)
V t b
(cm 3 /g)
V mi c
(cm 3 /g)
V mc d
(cm 3 /g) R mi e m f
CS-1 1752 1.32 0.48 0.84 0.36 0.5
CS-1N 1339 1.05 0.38 0.67 0.36 1.0
CS-2 1354 0.95 0.41 0.54 0.43 0.6
CS-2N 1062 0.80 0.34 0.46 0.42 1.2
CF-1 3054 1.69 1.04 0.65 0.62 0.4
CF-1N 1917 0.91 0.75 0.16 0.82 1.1
a BET surface area; b Total pore volume; c micropore volume; d mesopore volume; e
microporosity; and f number of phenol molecules adsorbed per unit surface area.
Figure 11.11 Nitrogen adsorption/desorption isotherms of porous carbons (for clarity,
the isotherms of CS-1, CS-1N, CS-2N, CF-1 and CF-1N were vertically shifted for 100,
450, 250, 200 and 800 cm3/g, respectively) (Su et al., 2005). Note, CS-1: initially
prepared carbon sample; CS-1N: CS-1 heated at 9000C in N 2 ; CS-2N: sample heated at
800 0 C and 900 0 C with N 2 ; CF-1: carbon sample heated at 1100 0 C; and CF-1N: CF-1
heated at 900 0 C with N 2 for 4 h.
 
Search WWH ::




Custom Search