Database Reference
In-Depth Information
min z 2
+
z 12
2
= i = ∈I δ
w 11
=
z 11
80
i
z 2
+
z 3
=
z 4
w 12
=
z 12
1110
z 5
+
z 6
+
z 7
=
z 8
w 13
=
z 13
90
z 12
+
z 13
=
z 14
w 14
=
z 14
1200
z 15
+
z 16
+
z 17
=
z 18
w 15
=
z 15
1130
z 4
z 8
=
z 9
w 16
=
z 16
40
z 14
z 18
=
z 19
w 17
=
z 17
20
z 1
z 10
z 11 z 19 = z 20
w 1 = z 1 50
w 2 = z 2 900
w 3 = z 3 100
w 4 = z 4 1250
w 5 = z 5 1120
w 6 = z 6 20
w 7 = z 7 80
w 8 =
z 9
=
w 18
1120
w 19 = z 19 10
w 20 = z 20 90
w i M 2 δ i 0 i [ 1 .. 20 ]
w i M 2 δ i 0 i [ 1 .. 20 ]
z i M 1 0 i [ 1 .. 20 ]
z i M 1 0 i [ 1 .. 20 ]
z i , w i Z i [ 1 .. 20 ]
δ i ∈{ 0 , 1 }∀ i [ 1 .. 20 ]
=
z 18
z 8
1220
w 9 =
z 9
30
w 10 =
z 10
80
Instance of OPT SUM
glb
Fig. 5.1
( D,AC,
q 3 ,
D
)
obtained for “Balance Sheet” example
5.3.2
- and
-queries
MAX
MIN
We now show how range-consistent answer to
MAX
-queries can be computed.
MIN
-
queries can be handled symmetrically.
Given a
I
MAX
-query q , we denote the set of indices in
of the variables z i occur-
ring in
T (
q
)
as
I (
q
)
. Let In
(
q
)
be the following set of inequalities:
z j
z i
2 M
· μ i
0
j
,
i
∈ I (
q
) ,
j
=
i
) μ i = |I (
q
) |−
1
i
∈I (
q
x i
M
· μ i
0
i
∈ I (
q
)
x i
M
· μ i
0
i
∈ I (
q
)
z i
x i
2 M
· (
1
− μ
)
0
i
∈ I (
q
)
;
i
In
(
q
)
:
=
z i
+
x i
2 M
· (
1
− μ
)
0
i
∈ I (
q
)
;
i
x i
∈ I (
)
M
0
i
q
;
∈ I (
)
x i
M
0
i
q
;
x i
Q
∈ I Q (
)
i
q
x i
Z
i
∈ I Z (
q
)
μ i
∈{
0
,
1
}
;
i
∈ I (
q
)
;
where
I Q (
q
) ⊆ I (
q
)
(resp.,
I Z (
q
) ⊆ I (
q
)
) is the the set of the indexes of the
variables z i in
I (
q
)
which are defined on the domain
Q
(resp.,
Z
).
Consider the following optimization problem:
MILP ( D,AC,
D
,
q
)=
MILP
( D,AC,
D
) ∪{λ =
i
δ i }∪
In
(
q
)
∈I
 
Search WWH ::




Custom Search