Chemistry Reference
In-Depth Information
8. Zhu H, McShane MJ (2005) Loading of hydrophobic materials into polymer particles:
implications for fluorescent nanosensors and drug delivery. J Am Chem Soc 127:
13448-13449
9. Gouanve F, Schuster T, Allard E, Meallet-Renault R, Larpent C (2007) Fluorescence
quenching upon binding of copper ions in dye-doped and ligand-capped polymer nanopar-
ticles: a simple way to probe the dye accessibility in nano-sized templates. Adv Funct Mater
17:2746-2756
10. Borisov SM, Mayr T, Klimant I (2008) Poly(styrene-block-vinylpyrrolidone) beads as a
versatile material for simple fabrication of optical nanosensors. Anal Chem 80:573-582
11. Borisov SM, Klimant I (2009) Luminescent nanobeads for optical sensing and imaging of
dissolved oxygen. Microchim Acta 164:7-15
12. Borisov SM, Herrod DL, Klimant I (2009) Fluorescent poly(styrene-block-vinylpyrrolidone)
nanobeads for optical sensing of pH. Sens Actuators B 139:52-58
13. Yabu H, Higuchi T, Shimomura M (2005) Unique phase-separation structures of block-
copolymer nanoparticles. Adv Mater 17:2062-2065
14. Higuchi T, Yabu H, Shimomurab M (2006) Simple preparation of hemispherical polystyrene
particles. Colloids Surf A: Physicochem Eng Asp 284-285:250-253
15. Kuerner JM, Klimant I, Krause Ch, Preu H, Kunz W, Wolfbeis OS (2001) Inert phosphores-
cent nanospheres as markers for optical assays. Bioconjug Chem 12:883-889
16. Bychkova V, Shvarev A (2009) Fabrication of micrometer and submicrometer-sized ion-
selective optodes via a solvent displacement process. Anal Chem 81:2325-2331
17. Borisov SM, Mayr T, Mistlberger G, Waich K, Koren K, Chojnacki P, Klimant I (2009)
Precipitation as a simple and versatile method for preparation of optical nanochemosensors.
Talanta 79:1322-1330
18. Tsagkatakis I, Peperv S, Retter R, Bell M, Bakker E (2001) Monodisperse plasticized poly
(vinyl chloride) fluorescent microspheres for selective ionophore-based sensing and extrac-
tion. Anal Chem 73:6083-6087
19. Mistlberger G, Borisov SM, Klimant I (2009) Enhancing performance in optical sensing with
magnetic nanoparticles. Sens Actuators B 139:174-180
20. Demchenko AP (2010) Comparative analysis of fluorescence reporter signals based on
intensity, anisotropy, time-resolution and wavelength-ratiometry. In: Demchenko AP (ed)
Advanced fluorescence reporters in chemistry and biology. I. Springer Ser Fluoresc 8:3-25
21. Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Optical nanosensors for chemical
analysis inside single living cells. 1. Fabrication, characterization, and methods for intracel-
lular delivery of PEBBLE sensors. Anal Chem 71:4831-4836
22. Mayr T, Borisov SM, Abel T, Enko B, Waich K, Mistlberger G, Klimant I (2009) Light
harvesting as a simple and versatile way to enhance brightness of luminescent sensors. Anal
Chem 81:6541-6545
23. Klimant I, Huber C, Liebsch G, Neurauter G, Stangelmayer A, Wolfbeis OS (2001) Dual
lifetime referencing (DLR) - a new scheme for converting fluorescence intensity into a
frequency-domain or time-domain information. In: Valeur B, Brochon JC (eds) Springer Ser
Fluoresc 1:257-274
24. Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical
sensors using time domain dual lifetime referencing. Anal Chem 73:4354-4363
25. Huber Ch, Klimant I, Krause Ch, Werner T, Mayr T, Wolfbeis OS (2000) Optical sensor for
seawater salinity. Fresenius J Anal Chem 368:196-202
26. Waich K, Borisov SM, Mayr T, Klimant I (2009) Dual lifetime referenced trace ammonia
sensors. Sens Actuators B 139:132-138
27. Kim HM, Cho BR (2009) Two-photon materials with large two-photon cross sections.
Structure-property relationship. Chem Commun 2:153-164
28. Lubbers DW, Opitz N, Speiser PP, Bisson HJ (1977) Nanoencapsulated fluorescence indica-
tor molecules measuring pH and pO 2 down to submicroscopical regions on the basis of the
optode principle. Z Naturforsch 32:133-134
Search WWH ::




Custom Search