Chemistry Reference
In-Depth Information
192. Chan CP, Tzang LC, Sin K et al (2007) Biofunctional organic nanocrystals for quantitative
detection of pathogen deoxyribonucleic acid. Anal Chim Acta 584:7-11
193. Zhou Q, Swager TM (1995) Fluorescent chemosensors based on energy migration in
conjugated polymers: the molecular wire approach to increased sensitivity. J Am Chem
Soc 117:12593-12602
194. Yang JS, Swager TM (1998) Fluorescent porous polymer films as TNT chemosensors:
electronic and structural effects. J Am Chem Soc 120:11864-11873
195. McQuade DT, Hegedus AH, Swager TM (2000) Signal amplification of a “turn-on” sensor:
harvesting the light captured by a conjugated polymer. J Am Chem Soc 122:12389-12390
196. Thomas SW III, Joly GD, Swager TM (2007) Chemical sensors based on amplifying
fluorescent conjugated polymers. Chem Rev 107:1339-1386
197. Montalti M, Prodi L, Zaccheroni N et al (2002) Solvent-induced modulation of
collective photophysical processes in fluorescent silica nanoparticles. J Am Chem Soc
124:13540-13546
198. Montalti M, Prodi L, Zaccheroni N (2005) Fluorescence quenching amplification in silica
nanosensors for metal ions. J Mater Chem 15:2810-2814
199. Bonacchi S, Rampazzo E, Montalti M et al (2008) Amplified fluorescence response of
chemosensors grafted onto silica nanoparticles. Langmuir 24:8387-8392
200. Balzani V, Ceroni P, Gestermann S et al (2000) Dendrimers as fluorescent sensors with
signal amplification. Chem Commun 10:853-854
201. Balzani V, Ceroni P, Gestermann S et al (2000) Effect of protons and metal ions on the
fluorescence properties of a polylysin dendrimer containing twenty four dansyl units. J Chem
Soc Dalton Trans 3765-3771
202. V¨gtle F, Gestermann S, Kauffmann C et al (2000) Coordination of CO 2+ ions in the interior
of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery.
J Am Chem Soc 122:10389-10404
203. Pugh VJ, Hu QS, Zuo X et al (2001) Optically active BINOL core-based phenyleneethyny-
lene dendrimers for the enantioselective fluorescent recognition of amino alcohols. J Org
Chem 66:6136-6140
204. Xu MH, Lin J, Hu QS et al (2002) Fluorescent sensors for the enantioselective recognition
of mandelic acid: signal amplification by dendritic branching. J Am Chem Soc 124:
14239-14246
205. Guo M, Varnavski O, Narayanan A et al (2009) Investigations of energy migration in an
organic dendrimer macromolecule for sensory signal amplification. J Phys Chem A
113:4763-4771
206. Roda A, Guardigli M, Michelini E et al (2009) Nanobioanalytical luminescence: F¨rster-
type energy transfer methods. Anal Bioanal Chem 393:109-123
207. F¨rster T (1948) Intermolecular energy migration and fluorescence. Ann Phys 2:55-75
208. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy
transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed
45:4562-4588
209. Braslavsky SE (2007) Glossary of terms used in photochemistry. 3rd Edition (IUPAC
Recommendations 2006). Pure Appl Chem 79:293-465
210. White BR, Holcombe JA (2007) Fluorescent peptide sensor for the selective detection
of Cu 2+ . Talanta 71:2015-2020
211. Zhou Z, Yu M, Yang H et al (2008) FRET-based sensor for imaging chromium(III) in living
cells. Chem Commun 3387-3389
212. Liu CW, Huang CC, Chang HT et al (2009) Highly selective DNA-based sensor for lead(II)
and mercury(II) ions. Anal Chem 81:2383-2387
213. Yuan M, Zhou W, Liu X et al (2008) A multianalyte chemosensor on a single molecule:
promising structure for an integrated logic gate. J Org Chem 73:5008-5014
214. Huang CC, Chang HT (2006) Selective gold-nanoparticle-based “turn-on” fluorescent sen-
sors for detection of mercury(II) in aqueous solution. Anal Chem 78:8332-8338
Search WWH ::




Custom Search