Biomedical Engineering Reference
In-Depth Information
The advancement in cell culture techniques for limbal epithelial cells has allowed
expansion of cells from limited starting material and now cultured stem cell
therapy is used to treat ocular surface damage in many centres across the globe.
Clinical therapies of the future will undoubtedly benefit from the expanding field
of tissue engineering, which will provide new and innovative biomaterials for
tissue transplantation carriers and cell culture substrates.
Acknowledgments The authors gratefully acknowledge the funding support of the Technology
Strategy Board, the EPSRC (HL) and the National Institute for Health Research Biomedical
Research Centre for Ophthalmology, Moorfields Eye Hospital and UCL Institute of Ophthal-
mology (JTD). Thanks to Dr. Alex Shortt for use of the crypt and clinical images and Dr. Anna
O'Callaghan for her CFE image.
References
1. Thoft RA, Friend J (1983) The X, Y, Z hypothesis of corneal epithelial maintenance. Invest
Ophthalmol Vis Sci 24(10):1442-1443
2. Davanger M, Evensen A (1971) Role of the pericorneal papillary structure in renewal of
corneal epithelium. Nature 229(5286):560-561
3. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling
limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications
on epithelial stem cells. Cell 57(2):201-209
4. Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P, De Luca M (1999)
Location and clonal analysis of stem cells and their differentiated progeny in the human
ocular surface. J Cell Biol 145(4):769-782
5. Chen JJ, Tseng SC (1991) Abnormal corneal epithelial wound healing in partial-thickness
removal of limbal epithelium. Invest Ophthalmol Vis Sci 32(8):2219-2233
6. Li W, Hayashida Y, Chen YT, Tseng SC (2007) Niche regulation of corneal epithelial stem
cells at the limbus. Cell Res 17(1):26-36
7. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld
GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is
expressed in a wide variety of stem cells and is a molecular determinant of the side-
population phenotype. Nat Med 7(9):1028-1034
8. de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li D-Q (2005) ABCG2 transporter
identifies a population of clonogenic human limbal epithelial cells. Stem Cells 23(1):63-73
9. Chen Z, de Paiva CS, Luo L, Kretzer FL, Pflugfelder SC, Li D-Q (2004) Characterization of
putative stem cell phenotype in human limbal epithelia. Stem Cells 22(3):355-366
10. Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D,
McKeon F, De Luca M (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S
A 98(6):3156-3161
11. Dua HS, Joseph A, Shanmuganathan VA, Jones RE (2003) Stem cell differentiation and the
effects of deficiency. Eye (Lond Engl) 17(8):877-885
12. Chee KY, Kicic A, Wiffen SJ (2006) Limbal stem cells: the search for a marker. Clin Exp
Ophthalmol 34(1):64-73
13. Zhou SY, Zhang C, Baradaran E, Chuck RS (2010) Human corneal basal epithelial cells
express an embryonic stem cell marker OCT4. Curr Eye Res 35(11):978-985
14. Wang H, Tao T, Tang J, Mao Y, Li W, Peng J, Tan G, Zhou Y, Zhong J, Tseng S, Kawakita
T, Zhao Y, Liu Z (2009) Importin 13 serves as a potential marker for corneal epithelial
progenitor cells. Stem Cells 27:2516-2526
Search WWH ::




Custom Search