Biomedical Engineering Reference
In-Depth Information
[Fiete et al. 2004] Fiete I. R., Hanslosser R. H. R., Fee M. S. and Seung H. S.
Temporal sparseness of the premotor drive is important for rapid learning in a
neural network model of birdsong. J. Neurophysiol. 92 , 2274-2282 (2004).
[Fletcher 1988] Fletcher N. H. Birdsong: a quantitative acoustic model. J. Theor.
Biol. 135 , 455-481 (1988).
[Fletcher 2000] Fletcher N. H. A class of chaotic calls. J. Acoust. Soc. Am. 108 ,
821-826 (2000).
[Fletcher and Tarnopolsky 1999] Fletcher N. H. and Tarnopolsky A. Acoustics of
the avian vocal tract. J. Acoust. Soc. Am. 105 , 35-49 (1999).
[Fletcher et al. 2004] Fletcher N. H., Riede T., Beckers G. J. L. and Suthers R.
Vocal tract filtering of the 'coo' of doves. Preprint (2005).
[Gardner et al. 2001] Gardner T., Cecchi G., Magnasco M., Laje R. and Mindlin
G. B. Simple motor gestures for birdsongs. Phys. Rev. Lett. 87 , Art. 2008101,
1-4 (2001).
[Gaunt 1983] Gaunt A. S. An hypothesis concerning the relationship of syringeal
structure to vocal abilities. The Auk 100 , 853-862 (1983).
[Gaunt et al. 1982] Gaunt A. S., Gaunt S. L. L. and Casey R. Syringeal mechanisms
reassessed: evidence from streptopelia. The Auk 99 , 474-494 (1982).
[Glass 2001] Glass L. Synchronization and rhythmic processes in physiology.
Nature 410 , 277-284 (2001).
[Glass and Mackey 1988] Glass L. and Mackey M. C. From Clocks to Chaos: The
RhythmsofLife . Princeton University Press, Princeton (1988).
[Goller 1998] Goller F. Vocal gymnastics and the bird brain. Nature 395 , 11-12
(1998).
[Goller and Larsen 1997a] Goller F. and Larsen O. N. A new mechanism of sound
generation in songbirds. Proc. Natl. Acad. Sci. USA 94 , 14787-14791 (1997).
[Goller and Larsen 1997b] Goller F. and Larsen O. N. In situ biomechanics of the
syrinx and sound generation in pigeons. J. Exp. Biol. 200 , 2165-2176 (1997).
[Goller and Larsen 2002] Goller F. and Larsen O. N. New perspectives on mecha-
nisms of sound generation in songbirds. J. Comp. Physiol. A 188 , 841 (2002).
[Goller and Suthers 1995] Goller F. and Suthers R. A. Implications for lateraliza-
tion of birdsong from unilateral gating of bilateral motor patterns. Nature 373 ,
63-66 (1995).
[Goller and Suthers 1996a] Goller F. and Suthers R. A. Role of syringeal muscles
in gating airflow and sound production in singing brown thrashers. J. Neuro-
physiol. 75 , 867-876 (1996).
[Goller and Suthers 1996b] Goller F. and Suthers R. A. Role of syringeal muscles
in controlling the phonology of bird song. J. Neurophysiol. 76 , 287-300 (1996).
[Goller and Suthers 1999] Goller F. and Suthers R. A. (1999). Bilaterally symmet-
rical respiratory activity during lateralized birdsong. J. Neurobiol. 41 , 513-523
(1999).
[Gonzalez and Piro 1983] Gonzalez D. L. and Piro O. Chaos in a nonlinear driven
oscillator with exact solution. Phys. Rev. Lett. 50 , 870-872 (1983).
[Greenwalt 1968] Greenwalt C. H. Birdsong: Acoustic and Physiology . Smithsonian
Institute Press, Washington, DC (1968).
[Hahnloser et al. 2002] Hahnloser R. H. R., Kozhevnikov A. A. and Fee M. S. An
ultra-sparse code underlies the generation of neural sequences in a songbird.
Nature 429 , 65-70 (2002).
[Hartley 1990] Hartley R. S. Expiratory muscle activity during song production in
the canary. Respir. Physiol. 81 , 177-188 (1990).
Search WWH ::




Custom Search