Chemistry Reference
In-Depth Information
45. Burton RA, Tjandra N (2007) Residue-specific 13 C 0 CSA tensor principal components for
ubiquitin: correlation between tensor components and hydrogen bonding. J Am Chem Soc
129(5):1321-1326
46. Kurita J et al (2003) Measurement of 15 N chemical shift anisotropy in a protein dissolved in
a dilute liquid crystalline medium with the application of magic angle sample spinning. J Magn
Reson 163(1):163-173
47. Yao LS et al (2010) Site-specific backbone amide 15 N chemical shift anisotropy tensors in
a small protein from liquid crystal and cross-correlated relaxation measurements. J Am Chem
Soc 132(12):4295-4309
48. Boisbouvier J, Delaglio F, Bax A (2003) Direct observation of dipolar couplings between distant
protons in weekly aligned nucleic acids. Proc Natl Acad Sci USA 100(20):11333-11338
49. Yao LS et al (2008) NMR determination of amide N-H equilibrium bond length from
concerted dipolar coupling measurements. J Am Chem Soc 130(49):16518
50. Ottiger M, Bax A (1998) Determination of relative N-H N N-C 0 ,C a -C 0 ,andC a -H a effective bond
lengths in a protein by NMR in a dilute liquid crystalline phase. J Am Chem Soc 120
(47):12334-12341
51. Clore GM, Schwieters CD (2004) Amplitudes of protein backbone dynamics and correlated
motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear
relaxation measurements. Biochemistry 43(33):10678-10691
52. Clore GM, Schwieters CD (2004) How much backbone motion in ubiquitin is required to
account for dipolar coupling data measured in multiple alignment media as assessed by
independent cross-validation? J Am Chem Soc 126(9):2923-2938
53. Bax A, Tjandra N (1997) Are proteins even floppier than we thought? Nat Struct Biol
4(4):254-256
54. Fredriksson K et al (2004) On the interpretation of residual dipolar couplings as reporters of
molecular dynamics. J Am Chem Soc 126(39):12646-12650
55. Louhivuori M et al (2003) On the origin of residual dipolar couplings from denatured proteins.
J Am Chem Soc 125(50):15647-15650
56. Jha AK et al (2005) Statistical coil model of the unfolded state: resolving the reconciliation
problem. Proc Natl Acad Sci USA 102(37):13099-13104
57. Meier S, Grzesiek S, Blackledge M (2007) Mapping the conformational landscape of urea-
denatured ubiquitin using residual dipolar couplings. J Am Chem Soc 129(31):9799-9807
58. Esteban-Martin S, Fenwick RB, Salvatella X (2010) Refinement of ensembles describing
unstructured proteins using NMR residual dipolar couplings. J Am Chem Soc 132(13):
4626-4632
59. Nodet G et al (2009) Quantitative description of backbone conformational sampling of
unfolded proteins at amino acid resolution from NMR residual dipolar couplings. J Am
Chem Soc 131(49):17908-17918
60. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid
crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc
122(15):3791-3792
61. Zweckstetter M (2008) NMR: prediction of molecular alignment from structure using the
PALES software. Nat Protoc 3(4):679-690
62. Valafar H, Prestegard JH (2004) REDCAT: a residual dipolar coupling analysis tool. J Magn
Reson 167(2):228-241
63. Cornilescu G et al (1998) Validation of protein structure from anisotropic carbonyl chemical
shifts in a dilute liquid crystalline phase. J Am Chem Soc 120(27):6836-6837
64. Clore GM, Garrett DS (1999) R-factor, free R, and complete cross-validation for dipolar
coupling refinement of NMR structures. J Am Chem Soc 121(39):9008-9012
65. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and
dynamics. Protein Sci 12(1):1-16
66. Schwieters CD, Kuszewski JJ, Clore GM (2006) Using Xplor-NIH for NMR molecular
structure determination. Prog Nucl Magn Reson Spectrosc 48(1):47-62
Search WWH ::




Custom Search