Chemistry Reference
In-Depth Information
85. Kuntz ID, Meng EC, Shoichet BK (1994) Structure-based molecular design. Acc Chem Res
27(5):117-123
86. Krovat EM, Steindl T, Langer T (2005) Recent advances in docking and scoring. Curr
Comput Aided Drug Des 1(1):93-102
87. Cole JC et al (2005) Comparing protein-ligand docking programs is difficult. Proteins 60
(3):325-332
88. Wandzik I (2006) Current molecular docking tools and comparisons thereof. MATCH 55
(2):271-278
89. Dias R, de Azevedo WF Jr (2008) Molecular docking algorithms. Curr Drug Targets 9
(12):1040-1047
90. Viji SN, Prasad PA, Gautham N (2009) Protein-ligand docking using mutually orthogonal
Latin squares (MOLSDOCK). J Chem Inf Model 49(12):2687-2694
91. Pearce BC et al (2009) E-novo: an automated workflow for efficient structure-based lead
optimization. J Chem Inf Model 49(7):1797-1809
92. Mizutani MY, Tomioka N, Itai A (1994) Rational automatic search method for stable docking
models of protein and ligand. J Mol Biol 243(2):310-326
93. Schlosser J, Rarey M (2009) Beyond the virtual screening paradigm: structure-based
searching for new lead compounds. J Chem Inf Model 49(4):800-809
94. Bostrom J, Greenwood JR, Gottfries J (2003) Assessing the performance of OMEGA with
respect to retrieving bioactive conformations. J Mol Graph Model 21(5):449-462
95. Miller MD et al (1994) FLOG: a system to select quasi-flexible ligands complementary to
a receptor of known three-dimensional structure. J Comput Aided Mol Des 8(2):153-174
96. Griewel A et al (2009) Conformational sampling for large-scale virtual screening: accuracy
versus ensemble size. J Chem Inf Model 49(10):2303-2311
97. Hart TN, Read RJ (1994) Multiple-start Monte Carlo docking of flexible ligands.
Birkhaeuser, Boston
98. Fuhrmann J et al (2010) A new Lamarckian genetic algorithm for flexible ligand-receptor
docking. J Comput Chem 31(9):1911-1918
99. Cao T, Li T (2004) A combination of numeric genetic algorithm and tabu search can be
applied to molecular docking. Comput Biol Chem 28(4):303-312
100. Huang S-Y, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci
11:3016-3034
101. Huang S-Y, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for
protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 12(40):
12899-12908
102. Huang S-Y, Zou X (2010) Mean-force scoring functions for protein-ligand binding. Annu
Rep Comput Chem 6:281-296
103. Bohme A et al (1998) Piperacillin/tazobactam versus cefepime as initial empirical antimicro-
bial therapy in febrile neutropenic patients: a prospective randomized pilot study. Eur J Med
Res 3(7):324-330
104. Eldridge MD et al (1997) Empirical scoring functions: I. The development of a fast empirical
scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput
Aided Mol Des 11(5):425-445
105. Tao P, Lai L (2001) Protein ligand docking based on empirical method for binding affinity
estimation. J Comput Aided Mol Des 15(5):429-446
106. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring
functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16(1):
11-26
107. Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand
interactions: a simplified potential approach. J Med Chem 42(5):791-804
108. Gohlke H, Hendlich M, Klebe G (2000) Knowledge-based scoring function to predict
protein-ligand interactions. J Mol Biol 295(2):337-356
Search WWH ::




Custom Search