Chemistry Reference
In-Depth Information
60. Vanwetswinkel S et al (2005) TINS, target immobilized NMR screening: an efficient and
sensitive method for ligand discovery. Chem Biol 12(2):207-216
61. Fejzo J et al (1999) The SHAPES strategy: an NMR-based approach for lead generation in
drug discovery. Chem Biol 6(10):755-769
62. Dalvit C et al (2003) Fluorine-NMR experiments for high-throughput screening: theoretical
aspects, practical considerations, and range of applicability. J Am Chem Soc 125(25):
7696-7703
63. Dalvit C et al (2002) Fluorine-NMR competition binding experiments for high-throughput
screening of large compound mixtures. Comb Chem High Throughput Screen 5(8):605-611
64. Dalvit C et al (2003) A general NMR method for rapid, efficient, and reliable biochemical
screening. J Am Chem Soc 125(47):14620-14625
65. Dalvit C et al (2004) Reliable high-throughput functional screening with 3-FABS. Drug
Discov Today 9(14):595-602
66. Price SW (1997) Pulsed-field gradient nuclear magnetic resonance as a tool for studying
translational diffusion: part 1. Basic theory. Concepts Magn Reson 9:299-336
67. Price SW (1998) Pulsed-field gradient nuclear magnetic resonance as a tool for studying
translational diffusion: part II. Experimental aspects. Concepts Magn Reson 10:197-237
68. Shortridge MD et al (2008) Estimating protein-ligand binding affinity using high-throughput
screening by NMR. J Comb Chem 10(6):948-958
69. Ji Z, Yao Z, Liu M (2009) Saturation transfer difference nuclear magnetic resonance study on
the specific binding of ligand to protein. Anal Biochem 385(2):380-382
70. Muhandiram DR et al (1993) A gradient 13C NOESY-HSQC experiment for recording
NOESY spectra of 13C-labeled proteins dissolved in H2O. J Magn Reson B 102(3):317-321
71. Sklenar V et al (1993) Gradient-tailored water suppression for proton-nitrogen-15 HSQC
experiments optimized to retain full sensitivity. J Magn Reson A 102(2):241-245
72. Per VK et al (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole
coupling and chemical shift anisotropy indicates an avenue to NMR structures of very
large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366-12371
73. Shuker SB et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science
274(5292):1531-1534
74. Fielding L (2007) NMR methods for the determination of protein-ligand dissociation
constants. Prog Nucl Magn Reson Spectrosc 51:219-242
75. Morton CJ et al (1996) Solution structure and peptide binding of the SH3 domain from human
Fyn. Structure 4(6):705-714
76. Stoll F (2003) Library design. Chimia 57(5):224-228
77. Erlanson DA, McDowell RS, O'Brien T (2004) Fragment-based drug discovery. J Med Chem
47(14):3463-3482
78. Siegal G, Ab E, Schultz J (2007) Integration of fragment screening and library design. Drug
Discov Today 12(23&24):1032-1039
79. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov
Today Technol 1(4):337-341
80. Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-
dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol
NMR 33(4):199-211
81. Schanda P, Brutscher B (2006) Hadamard frequency-encoded SOFAST-HMQC for ultrafast
two-dimensional protein NMR. J Magn Reson 178(2):334-339
82. Mori S et al (1995) Improved sensitivity of HSQC spectra of exchanging protons at short
interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water
saturation. J Magn Reson B 108(1):94-98
83. Taufer M et al (2005) Study of an accurate and fast protein-ligand docking algorithm based
on molecular dynamics. Concurr Comput 17(14):1627-1641
84. Garcia-Sosa AT, Sild S, Maran U (2009) Docking and virtual screening using distributed grid
technology. QSAR Comb Sci 28:815-821
Search WWH ::




Custom Search