Chemistry Reference
In-Depth Information
35. Loving K, Salam NK, Sherman W (2009) Energetic analysis of fragment docking and
application to structure-based pharmacophore hypothesis generation. J Comput Aided Mol
Des 23(8):541-554
36. Salaniwal S et al (2007) Critical evaluation of methods to incorporate entropy loss upon
binding in high-throughput docking. Proteins 66(2):422-435
37. Vasilyev V, Bliznyuk A (2004) Application of semiempirical quantum chemical methods
as a scoring function in docking. Theor Chem Acc 112(4):313-317
38. Wei D et al (2010) Binding energy landscape analysis helps to discriminate true hits from
high-scoring decoys in virtual screening. J Chem Inf Model 50(10):1855-1864
39. Zavodszky MI et al (2009) Scoring ligand similarity in structure-based virtual screening.
J Mol Recognit 22(4):280-292
40. Morris GM et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective
receptor flexibility. J Comput Chem 30(16):2785-2791
41. Ewing TJ et al (2001) DOCK 4.0: search strategies for automated molecular docking of
flexible molecule databases. J Comput Aided Mol Des 15(5):411-428
42. Rarey M et al (1996) A fast flexible docking method using an incremental construction
algorithm. J Mol Biol 261(3):470-489
43. Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring.
1. Method and assessment of docking accuracy. J Med Chem 47(7):1739-1749
44. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking
approach based on biochemical or biophysical
information. J Am Chem Soc 125(7):
1731-1737
45. Bohm HJ (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor
leads. J Comput Aided Mol Des 6(6):593-606
46. Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of
enzyme inhibitors. J Comput Aided Mol Des 6(1):61-78
47. Cerqueira NMFSA et al. (2010) Virtual screening of compound libraries . Methods Mol Biol
572:57-70 (Ligand-Macromolecular Interactions in Drug Discovery)
48. Ripphausen P et al (2010) Quo vadis, virtual screening? A comprehensive survey of prospec-
tive applications. J Med Chem 53(24):8461-8467
49. Sousa SF et al (2010) Virtual screening in drug design and development. Comb Chem High
Throughput Screen 13(5):442-453
50. Eckert H, Bajorath J (2007) Molecular similarity analysis in virtual screening: foundations,
limitations and novel approaches. Drug Discov Today 12(5&6):225-233
51. Merz KM Jr (2010) Limits of free energy computation for protein-ligand interactions. J Chem
Theory Comput 6(5):1769-1776
52. Proschak E et al (2007) Shapelets: possibilities and limitations of shape-based virtual
screening. J Comput Chem 29(1):108-114
53. Wyss DF, McCoy MA, Senior MM (2002) NMR-based approaches for lead discovery. Curr
Opin Drug Discov Devel 5(4):630-647
54. Lepre CA, Moore JM, Peng JW (2004) Theory and applications of NMR-based screening in
pharmaceutical research. Chem Rev 104(8):3641-3676
55. Mercier KA, Powers R (2005) Determining the optimal size of small molecule mixtures for
high throughput NMR screening. J Biomol NMR 31(3):243-258
56. Hajduk PJ, Olejniczak ET, Fesik SW (1997) One-dimensional relaxation- and diffusion-
edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc
119:12257-12261
57. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer differ-
ence NMR spectroscopy. Angew Chem Int Ed 38(12):1784-1788
58. Dalvit C et al (2000) Identification of compounds with binding affinity to proteins via
magnetization transfer from bulk water. J Biomol NMR 18(1):65-68
59. Jahnke W, Rudisser S, Zurini M (2001) Spin label enhanced NMR screening. J Am Chem Soc
123(13):3149-3150
Search WWH ::




Custom Search