Chemistry Reference
In-Depth Information
3.
Integration of all newly developed techniques, including cell-free expression,
specific labeling, new pulse sequences, molecular dynamic simulations and
DNP.
With all the integrated techniques, we should be in a good position to solve a
membrane protein structure based purely on the SSNMR constraints.
Acknowledgments Financial support by the National Natural Science foundation (grant
30970657), Shanghai Pujiang Program (grant 09PJ1404300), and the start funds by the East
China Normal University (grants 79003A29, 79301207, and 79301411) are gratefully acknowl-
edged. We thank Professor Jiandong Ding from Fudan University for the help with optical
dynamic measurements of BR samples. Also, we thank our laboratory members, especially
Xiaoyan Ding, for great assistance with this project.
References
1. Carpenter EP, Beis K, Cameron AD et al (2008) Overcoming the challenges of membrane
protein crystallography. Curr Opin Struct Biol 18:581-586
2. Lodish H, Berk A, Kaiser CA et al (2007) Molecular cell biology, 6th edn. W.H. Freeman,
New York
3. White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344-346
4. Bill RM, Henderson PJF, Iwata S et al (2011) Overcoming barriers to membrane protein
structure determination. Nat Biotechnol 29:335-340
5. Okada T, Le Trong I, Fox BA et al (2000) X-ray diffraction analysis of three-dimensional
crystals of bovine rhodopsin obtained from mixed micelles. J Struct Biol 130:73-80
6. Salom D, Lodowski DT, Stenkamp RE et al (2006) Crystal structure of a photoactivated
deprotonated intermediate of rhodopsin. Proc Natl Acad Sci USA 103:16123-16128
7. Lange A, Giller K, Hornig S et al (2006) Toxin-induced conformational changes in a
potassium channel revealed by solid-state NMR. Nature 440:959-962
8. Ader C, Schneider R, Hornig S et al (2008) A structural link between inactivation and block
of a K+ channel. Nat Struct Mol Biol 15:605-612
9. Korukottu J, Schneider R, Vijayan V et al (2008) High-resolution 3D structure determination
of kaliotoxin by solid-state NMR spectroscopy. PLoS One 3:e2359
10. Zachariae U, Schneider R, Velisetty P et al (2008) The molecular mechanism of toxin-
induced conformational changes in a potassium channel: relation to C-type inactivation.
Structure 16:747-754
11. Ader C, Pongs O, Becker S et al (2010) Protein dynamics detected in a membrane-embedded
potassium channel using two-dimensional solid-state NMR spectroscopy. Biochim Biophys
Acta 1798:286-290
12. Crocker E, Eilers M, Ahuja S et al (2006) Location of Trp265 in metarhodopsin II:
implications for the activation mechanism of the visual receptor rhodopsin. J Mol Biol
357:163-172
13. Struts AV, Salgado GFJ, Tanaka K et al (2007) Structural analysis and dynamics of retinal
chromophore in dark and metal states of rhodopsin from H-2 NMR of aligned membranes.
J Mol Biol 372:50-66
14. Concistr` M, Gansm
uller A, McLean N et al (2008) Double-quantum 13C nuclear magnetic
resonance of bathorhodopsin, the first photointermediate in mammalian vision. J Am Chem
Soc 130:10490-10491
15. Mahalingam M, Martinez-Mayorga K, Brown MF et al (2008) Two protonation switches
control rhodopsin activation in membranes. Proc Natl Acad Sci USA 105:17795-17800
Search WWH ::




Custom Search