Chemistry Reference
In-Depth Information
249. Lian LY, Middleton DA (2001) Labelling approaches for protein structural studies by
solution-state and solid-state NMR. Prog Nucl Magn Reson Spectrosc 39:171-190
250. L
uterjans H (2003) A strategy to obtain backbone
resonance assignments of deuterated proteins in the presence of incomplete amide 2 H/ 1 H
back-exchange. J Biomol NMR 25:291-311
251. Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-
protonated proteins by multidimensional NMR. Biochemistry 36:1389-1401
252. Venters RA, Metzler WJ, Spicer LD, Mueller L, Farmer BT (1995) Use of 1 HN NOES to
determine protein global folds in perdeuterated proteins. J Am Chem Soc 117:9592-9593
253. Janin J, Miller S, Chothia C (1988) Surface, subunit interfaces and interior of oligomeric
proteins. J Mol Biol 204:155-164
254. Metzler W, Wittekind MJ, Goldfarb V, Mueller L, Farmer BT (1996) Incorporation of
1 H/ 13 C/ 15 N-{Ile, Leu, Val} into a perdeuterated, 15 N-labeled protein: potential in structure
determination of large proteins by NMR. J Am Chem Soc 118:6800-6801
255. Zheng D, Huang YJ, Moseley HNB, Xiao R, Aramini J, Swapna GVT, Montelione GT (2003)
Automated protein fold determination using a minimal NMR constraint strategy. Protein Sci
12:1232-1246
256. Kay LE (2011) Solution NMR spectroscopy of supra-molecular systems, why bother?
A methyl-TROSY view. J Magn Reson 210:159-170
257. Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynam-
ics and function. J Biomol NMR 46:75-87
258. Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR
studies of high-molecular-weight proteins. Chembiochem 6:1567-1577
259. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective
method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15 N, 13 C, 2 H-labeled
proteins. J Biomol NMR 13:369-374
260. Gardner KH, Kay LE (1997) Production and incorporation of 15 N, 13 C, 2 H( 1 H-
ohr F, Katsemi V, Hartleib J, G
unther U, R
1 methyl)
isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599-7600
261. Hilty C, Fern´ndez C, Wider G, W
d
uthrich K (2002) Side chain NMR assignments in the
membrane protein OmpX reconstituted in DHPC micelles. J Biomol NMR 23:289-301
262. Shih SC, Stoica I, Goto NK (2008) Investigation of the utility of selective methyl protonation
for determination of membrane protein structures. J Biomol NMR 42:49-58
263. Ayala I, Sounier R, Us´ N, Gans P, Boisbouvier J (2009) An efficient protocol for the
complete incorporation of methyl-protonated alanine in perdeuterated protein. J Biomol
NMR 43:111-119
264. Godoy-Ruiz R, Guo C, Tugarinov V (2010) Alanine methyl groups as NMR probes of
molecular structure and dynamics in high-molecular-weight proteins. J Am Chem Soc
132:18340-18350
265. Isaacson RL, Simpson PJ, Liu M, Cota E, Zhang X, Freemont P, Matthews S (2007) A new
labeling method for methyl transverse relaxation-optimized spectroscopy NMR spectra of
alanine residues. J Am Chem Soc 129:15428-15429
266. Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Karamanou S, Economou A,
Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase
motor SecA as determined by NMR. Cell 131:756-769
267. Fischer M, Kloiber K, Hausler J, Ledolter K, Konrat R, Schmid W (2007) Synthesis of a
13
C-methyl-group-labeled methionine precursor as a useful tool for simplifying protein
structural analysis by NMR spectroscopy. Chembiochem 8:610-612
268. Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for
C, 1 H labeling at the Ile-
gamma 2 methyl position in highly deuterated proteins. J Biomol NMR 48:129-135
269. Takeda M, Ikeya T, G
13
untert P, Kainosho M (2007) Automated structure determination of
proteins with the SAIL-FLYA NMR method. Nat Protoc 2:2896-2902
270. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Guntert P (2006) Optimal
isotope labelling for NMR protein structure determinations. Nature 440:52-57
Search WWH ::




Custom Search