Chemistry Reference
In-Depth Information
187. Sanders CR, Landis GC (1995) Reconstitution of membrane-proteins into lipid-rich bilayered
mixed micelles for NMR-studies. Biochemistry 34:4030-4040
188. Bocharov EV, Pustovalova YE, Pavlov KV, Volynsky PE, Goncharuk MV, Ermolyuk YS,
Karpunin DV, Schulga AA, Kirpichnikov MP, Efremov RG, Maslennikov IV, Arseniev AS
(2007) Unique dimeric structure of BNip3 transmembrane domain suggests membrane
permeabilization as a cell death trigger. J Biol Chem 282:16256-16266
189. Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA,
Artemenko EO, Efremov RG, Arseniev AS (2008) Spatial structure and pH-dependent
conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase
EphA1. J Biol Chem 283:29385-29395
190. Kang C, Vanoye CG, Welch RC, Van Horn WD, Sanders CR (2010) Functional delivery of a
membrane protein into oocyte membranes using bicelles. Biochemistry 49:653-655
191. Park SH, Casagrande F, Das BB, Albrecht L, Chu M, Opella SJ (2011) Local and global
dynamics of the G protein-coupled receptor CXCR1. Biochemistry 50:2371-2380
192. Ottiger M, Bax A (1999) Bicelle-based liquid crystals for NMR-measurement of dipolar
couplings at acidic and basic pH values. J Biomol NMR 13:187-191
193. Bertelsen K, Vad B, Nielsen EH, Hansen SK, Skrydstrup T, Otzen DE, Vosegaard T, Nielsen
NC (2011) Long-term-stable ether-lipid vs conventional ester-lipid bicelles in oriented solid-
state NMR: altered structural information in studies of antimicrobial peptides. J Phys Chem B
115:1767-1774
194. Struppe J, Whiles JA, Vold RR (2000) Acidic phospholipid bicelles: a versatile model
membrane system. Biophys J 78:281-289
195. Losonczi JA, Prestegard JH (1998) Improved dilute bicelle solutions for high-resolution
NMR of biological macromolecules. J Biomol NMR 12:447-451
196. Anglister J, Grzesiek S, Ren H, Klee CB, Bax A (1993) Isotope-edited multidimensional
NMR of calcineurin-B in the presence of the non-deuterated detergent CHAPS. J Biomol
NMR 3:121-126
197. Wu H, Su K, Guan X, Sublette ME, Stark RE (2010) Assessing the size, stability, and utility
of isotropically tumbling bicelle systems for structural biology. Biochim Biophys Acta
1798:482-488
198. Czerski L, Sanders CR (2000) Functionality of a membrane protein in bicelles. Anal Biochem
284:327-333
199. Denisov IG, McLean MA, Shaw AW, Grinkova YV, Sligar SG (2005) Thermotropic phase
transition in soluble nanoscale lipid bilayers. J Phys Chem B 109:15580-15588
200. Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett
584:1721-1727
201. Civjan NR, Bayburt TH, Schuler MA, Sligar SG (2003) Direct solubilization of heterolo-
gously expressed membrane proteins by incorporation into nanoscale lipid bilayers.
Biotechniques 35:556-560, 562-563
202. Bayburt TH, Sligar SG (2010) Self-assembly of single integral membrane proteins into
soluble nanoscale phospholipid bilayers. Protein Sci 12:2476-2481
203. Kijac AZ, Li Y, Sligar SG, Rienstra CM (2007) Magic-angle spinning solid-state NMR
spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46:13696-13703
204. Lyukmanova EN, Shenkarev ZO, Paramonov AS, Sobol AG, Ovchinnikova TV, Chupin VV,
Kirpichnikov MP, Blommers MJ, Arseniev AS (2008) Lipid-protein nanoscale bilayers: a
versatile medium for NMR investigations of membrane proteins and membrane-active
peptides. J Am Chem Soc 130:2140-2141
205. Gluck JM, Wittlich M, Feuerstein S, Hoffmann S, Willbold D, Koenig BW (2009) Integral
membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem
Soc 131:12060-12061
206. Kobashigawa Y, Harada K, Yoshida N, Ogura K, Inagaki F (2011) Phosphoinositide-
incorporated lipid-protein nanodiscs: a tool for studying protein-lipid interactions. Anal
Biochem 410:77-83
Search WWH ::




Custom Search