Chemistry Reference
In-Depth Information
51. Chill JH, Louis JM, Baber JL, Bax A (2006) Measurement of 15N relaxation in the detergent-
solubilized tetrameric KcsA potassium channel. J Biomol NMR 36:123-136
52. Grzesiek S, Bax A (1993) The importance of not saturating H 2 O in protein NMR - applica-
tion to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593
53. Li YC, Montelione GT (1994) Overcoming solvent saturation-transfer artifacts in protein
NMR at neutral pH - application of pulsed-field gradients in measurements of H-1 N-15
Overhauser effects. J Magn Reson Ser B 105:45-51
54. Renner C, Schleicher M, Moroder L, Holak TA (2002) Practical aspects of the 2D N-15-{H-
1}-NOE experiment. J Biomol NMR 23:23-33
55. Freedberg DI, Ishima R, Jacob J, Wang YX, Kustanovich I, Louis JM, Torchia DA (2002)
Rapid structural fluctuations of the free HIV protease flaps in solution. Protein Sci
11:221-232
56. Gong Q, Ishima R (2007) 15 N-{ 1 H} NOE experiment at high magnetic field strengths.
J Biomol NMR 37:147-157
57. Ferrage F, Piserchio A, Cowburn D, Ghose R (2008) On the measurement of 15 N-{ 1 H}
nuclear Overhauser effects. J Magn Reson 192:302-313
58. Ferrage F, Cowburn D, Ghose R (2009) Accurate sampling of high-frequency motions in
proteins by steady-state (15)N-{(1)H} nuclear Overhauser effect measurements in the pres-
ence of cross-correlated relaxation. J Am Chem Soc 131:6048-6049
59. Rule GS, Hichens KT (2006) Fundamentals of protein NMR spectroscopy, vol 5. Springer,
Dordrecht
60. Vugmeyster L, Raleigh DP, Palmer AGr, Vugmeister BE (2003) Beyond the decoupling
approximation in the model free approach for the interpretation of NMR relaxation of
macromolecules in solution. J Am Chem Soc 125:8400-8404
61. Vugmeyster L, McKnight CJ (2008) Slow motions in Chicken Villin headpiece subdomain
probed by cross-correlated NMR relaxation of amide NH bonds in successive residues.
Biophys J 95:5941-5950
62. Goldman M (1984) Interference effects in the relaxation of a pair of unlike spin-1/2 nuclei.
J Magn Reson 60:437-452
63. Boyd J, Hommel U, Campbell ID (1990) Influence of cross-correlation between dipolar and
anisotropic chemical shift relaxation mechanisms upon longitudinal relaxation rates of 15 N
in macromolecules. Chem Phys Lett 175:477-482
64. Wang L, Kurochkin AV, Zuiderweg ER (2000) An iterative fitting procedure for the
determination of longitudinal NMR cross-correlation rates. J Magn Reson 144:175-185
65. Bouguet-Bonnet S, Mutzenhardt P, Canet D (2004) Measurement of 15 N csa/dipolar cross-
correlation rates by means of spin state selective experiments. J Biomol NMR 30:133-142
66. Tjandra N, Szabo A, Bax A (1996) Protein backbone dynamics and N-15 chemical shift
anisotropy from quantitative measurement of relaxation interference effects. J Am Chem Soc
118:6986-6991
67. Fushman D, Cowburn D (1998) Model-independent analysis of 15 N chemical shift anisot-
ropy from NMR relaxation data. Ubiquitin as a test example. J Am Chem Soc 120:7109-7110
68. Fushman D, Tjandra N, Cowburn D (1998) Direct measurement of N-15 chemical shift
anisotropy in solution. J Am Chem Soc 120:10947-10952
69. Kroenke CD, Rance M, Palmer AGr (1999) Variability of the 15N chemical shift anisotropy
in Escherichia coli Ribonuclease H in Solution. J Am Chem Soc 121:10119-10125
70. Boyed J, Redfield C (1999) Characterization of 15 N chemical shift anisotropy from
orientation-dependent changes to 15 N chemical shifts in dilute bicelle solutions. J Am
Chem Soc 121:7441-7442
71. Kurita J, Shimahara H, Utsunomiya-Tate N, Tate S (2003) Measurement of 15N chemical
shift anisotropy in a protein dissolved in a dilute liquid crystalline medium with the applica-
tion of magic angle sample spinning. J Magn Reson 163:163-173
72. Lipsitz RS, Tjandra N (2003) 15N chemical shift anisotropy in protein structure refinement
and comparison with NH residual dipolar couplings. J Magn Reson 164:171-176
Search WWH ::




Custom Search