Chemistry Reference
In-Depth Information
126. Yu D, Volkov AN, Tang C (2009) Characterizing dynamic protein-protein interactions using
differentially scaled paramagnetic relaxation enhancement. J AmChem Soc 131:17291-17297
127. Liang B, Bushweller JH, Tamm LK (2006) Site-directed parallel spin-labeling and paramag-
netic relaxation enhancement in structure determination of membrane proteins by solution
NMR spectroscopy. J Am Chem Soc 128:4389-4397
128. Clore GM, Tang C, Iwahara J (2007) Elucidating transient macromolecular interactions
using paramagnetic relaxation enhancement. Curr Opin Struct Biol 17:603-616
129. Tang C, Schwieters CD, Clore GM (2007) Open-to-closed transition in apo maltose-binding
protein observed by paramagnetic NMR. Nature 449:1078-1082
130. Iwahara J, Clore GM (2006) Detecting transient intermediates in macromolecular binding by
paramagnetic NMR. Nature 440:1227-1230
131. Volkov AN, Ubbink M, van Nuland NA (2010) Mapping the encounter state of a transient
protein complex by PRE NMR spectroscopy. J Biomol NMR 48:225-236
132. Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Prog
Nucl Magn Reson Spectrosc 40:249-273
133. Biekofsky RR, Muskett FW, Schmidt JM et al (1999) NMR approaches for monitoring
domain orientations in calcium-binding proteins in solution using partial replacement of Ca 2
+
by Tb 3+ . FEBS Lett 460:519-526
134. Banci L, Bertini I, Bren KL et al (1996) The use of peudocontact shifts to refine solution
structures of paramagnetic metalloproteins: Met80Ala cyano-cytochrome c as an example.
J Biol Inorg Chem 1:117-126
135. Goodfellow BJ, Duarte IC, Macedo AL et al (2010) An NMR structural study of nickel-
substituted rubredoxin. J Biol Inorg Chem 15:409-420
136. Arnesano F, Banci L, Bertini I et al (2003) A strategy for the NMR characterization of type II
copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas
syringae. J Am Chem Soc 125:7200-7208
137. Bertini I, Kursula P, Luchinat C et al (2009) Accurate solution structures of proteins from
X-ray data and a minimal set of NMR data: calmodulin-peptide complexes as examples.
J Am Chem Soc 131:5134-5144
138. Pintacuda G, Park AY, Keniry MA et al (2006) Lanthanide labeling offers fast NMR
approach to 3D structure determinations of protein-protein complexes. J Am Chem Soc
128:3696-3702
139. Pintacuda G, John M, Su XC et al (2007) NMR structure determination of protein-ligand
complexes by lanthanide labeling. Acc Chem Res 40:206-212
140. Nguyen TH, Ozawa K, Stanton-Cook M et al (2010) Generation of pseudocontact shifts in
protein NMR spectra with a genetically encoded cobalt(II)-binding amino acid. Angew
Chem Int Ed Engl 50(3):692-694
141. Bertini I, Del Bianco C, Gelis I et al (2004) Experimentally exploring the conformational space
sampled by domain reorientation in calmodulin. Proc Natl Acad Sci USA 101:6841-6846
142. Bertini I, Gupta YK, Luchinat C et al (2007) Paramagnetism-based NMR restraints provide
maximum allowed probabilities for the different conformations of partially independent
protein domains. J Am Chem Soc 129:12786-12794
143. Bertini I, Duma L, Felli IC et al (2004) A heteronuclear direct-detection NMR spectroscopy
experiment for protein-backbone assignment. Angew Chem Int Ed 43:2257-2259
144. Bermel W, Bertini I, Felli IC et al (2006) C-13-detected protonless NMR spectroscopy of
proteins in solution. Prog Nucl Magn Reson Spectrosc 48:25-45
145. Bertini I, Jimenez B, Pierattelli R et al (2008) Protonless
13
C direct detection NMR:
characterization of the 37 kDa trimeric protein CutA1. Proteins 70:1196-1205
146. Machonkin TE, Westler WM, Markley JL (2002) 13 C{ 13 C} 2D NMR: a novel strategy for
the study of paramagnetic proteins with slow electronic relaxation rates. J Am Chem Soc
124:3204-3205
147. Caillet-Saguy C, Delepierre M, Lecroisey A et al (2006) Direct-detected 13 C NMR to
investigate the iron(III) hemophore HasA. J Am Chem Soc 128:150-158
Search WWH ::




Custom Search