Chemistry Reference
In-Depth Information
56. Brown RS (2005) Zinc finger proteins: getting a grip on RNA. Curr Opin Struct Biol 15:94-98
57. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and
functional diversity. Curr Opin Struct Biol 11:39-46
58. Wolfe SA, Nekludova L, Pabo CO (2000) DNA recognition by Cys2His2 zinc finger
proteins. Annu Rev Biophys Biomol Struct 29:183-212
59. Lee S, Doddapaneni K, Hogue A et al (2010) Solution structure of Gfi-1 zinc domain bound
to consensus DNA. J Mol Biol 397:1055-1066
60. Eustermann S, Brockmann C, Mehrotra PV et al (2010) Solution structures of the two PBZ
domains from human APLF and their interaction with poly(ADP-ribose). Nat Struct Mol
Biol 17:241-243
61. Isogai S, Kanno S, Ariyoshi M et al (2010) Solution structure of a zinc-finger domain that
binds to poly-ADP-ribose. Genes Cells 15:101-110
62. Hudson BP, Martinez-Yamout MA, Dyson HJ et al (2004) Recognition of the mRNA
AU-rich element by the zinc finger domain of TIS11d. Nat Struct Mol Biol 11:257-264
63. He Y, Imhoff R, Sahu A et al (2009) Solution structure of a novel zinc finger motif in the
SAP30 polypeptide of the Sin3 corepressor complex and its potential role in nucleic acid
recognition. Nucleic Acids Res 37:2142-2152
64. He F, Umehara T, Saito K et al (2010) Structural insight into the zinc finger CW domain as
a histone modification reader. Structure 18:1127-1139
65. Watanabe S, Arai T, Matsumi R et al (2009) Crystal structure of HypA, a nickel-binding
metallochaperone for [NiFe] hydrogenase maturation. J Mol Biol 394:448-459
66. Cavalli A, Salvatella X, Dobson CM et al (2007) Protein structure determination from NMR
chemical shifts. Proc Natl Acad Sci USA 104:9615-9620
67. Shen Y, Lange O, Delaglio F et al (2008) Consistent blind protein structure generation from
NMR chemical shift data. Proc Natl Acad Sci USA 105:4685-4690
68. Shen Y, Bryan PN, He Y et al (2010) De novo structure generation using chemical shifts for
proteins with high-sequence identity but different folds. Protein Sci 19:349-356
69. Raman S, Huang YJ, Mao B et al (2010) Accurate automated protein NMR structure
determination using unassigned NOESY data. J Am Chem Soc 132:202-207
70. Montalvao RW, Cavalli A, Salvatella X et al (2008) Structure determination of protein-
protein complexes using NMR chemical shifts: case of an endonuclease colicin-immunity
protein complex. J Am Chem Soc 130:15990-15996
71. Oz G, Pountney DL, Armitage IM (1998) NMR spectroscopic studies of I
ΒΌ
1/2 metal ions
in biological systems. Biochem Cell Biol 76:223-234
72. Drakenberg T, Jaohansson C, Forsen S (1997) In: Reid DG (ed) Protein NMR techniques.
Human Press, Totowa
73. Sun H (2002) Metallodrugs. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear
magnetic resonance: advances in NMR. Wiley, Chichester, pp 413-427
74. Blindauer CA, Harvey I, Bunyan KE et al (2009) Structure, properties, and engineering of
the major zinc binding site on human albumin. J Biol Chem 284:23116-23124
75. Li H, Otvos JD (1996) 111 Cd NMR studies of the domain specificity of Ag + and Cu + binding
to metallothionein. Biochemistry 35:13929-13936
76. Farrell RA, Thorvaldsen JL, Winge DR (1996) Identification of the Zn(II) site in the copper-
responsive yeast
transcription factor, AMT1: a conserved Zn module. Biochemistry
35:1571-1580
77. Kakalis LT, Kennedy M, Sikkink R et al (1995) Characterization of the calcium-binding sites
of calcineurin B. FEBS Lett 362:55-58
78. Baleja JD, Marmorstein R, Harrison SC et al (1992) Solution structure of the DNA-binding
domain of Cd2-GAL4 from S. cerevisiae. Nature 356:450-453
79. Pan T, Coleman JE (1990) GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)
2Cys6 binuclear cluster. Proc Natl Acad Sci USA 87:2077-2081
80. Vasak M (1998) Application of 113 Cd NMR to metallothioneins. Biodegradation 9:501-512
Search WWH ::




Custom Search