Agriculture Reference
In-Depth Information
20. Kurtzman, D. and Scanlon, B. R.: Groundwater recharge through vertisols: irrigated
cropland vs. natural land, Israel, Vadose Zone J., 10, 662-674, 2011.
21. Kurtzman, D., Shapira, R. H., Bar-Tal, A., Fine, P., and Russo, D.: Nitrate fluxes to
groundwater under citrus orchards in a Mediterranean climate: observations, cali-
brated models, simulations and agro-hydrological conclusions. J. Contam. Hydrol.,
151, 93-104, 2013.
22. Liao, L., Green, C. T., Bekins, B. A., and Bohlke, J. K.: Factors controlling ni-
trate fluxes in groundwater in agricultural areas, Water Resour. Res., 48, W00L09,
doi:10.1029/2011WR011008, 2012.
23. McIlvin, M. R. and Altabet, M. A.: Chemical conversion of nitrate and nitrite to
nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater,
Anal. Chem., 77, 5589-5595, 2005.
24. Melo, A., Pinto, E., Aguiar, A., Mansilha, C., Pinho, O., and Ferreira, I.: Impact of
intensive horticulture practices on groundwater content of nitrates, sodium, potas-
sium, and pesticides, Environ. Monit. Assess., 184, 4539-4551, 2012.
25. Morari, F., Lugato, E., Polese, R., Berti, A., and Giardini, L.: Nitrate concentra-
tions in groundwater under contrasting agricultural management practices in the low
plains of Italy, Agr. Ecosys. Environ., 147, 47-56, 2012.
26. Oren, O., Yechieli, Y., Bohlke, J. K., and Dody, A.: Contamination of groundwater
under cultivated fields in an arid environment, central Arava Valley, Israel, J. Hy-
drol., 290, 312-328, 2004.
27. Organic Centre Wales: http://www.organiccentrewales.org.uk/, last access: 1 De-
cember 2013.
28. Osenbruck, K., Fiedler, S., Knoller, K., Weise, S. M., Sultenfuss, J., Oster, H., and
Pang, X. P., and Letey, J.: Organic farming: challenge of timing nitrogen availability
to crop nitrogen requirements, Soil Sci. Soc. Am. J., 64, 247-253, 2000.
29. Rimon, Y., Dahan, O., Nativ, R., and Geyer, S.: Water percolation through the deep va-
dose zone and groundwater recharge: preliminary results based on a new vadose zone
monitoring system, Water Resour. Res., 43, W05402, doi:10.1029/2006WR004855,
2007.
30. Rimon, Y., Nativ, R., and Dahan, O.: Physical and chemical evidence for pore-scale
dual-domain flow in the vadose zone, Vadose Zone J., 10, 322-331, 2011a.
31. Rimon, Y., Nativ, R., and Dahan, O.: Vadose zone water pressure variation during
infiltration events, Vadose Zone J., 10, 1105- 1112, 2011b.
32. Seufert, V., Ramankutty, N., and Foley, J. A.: Comparing the yields of organic and
conventional agriculture, Nature, 485, 229-232, 2012.
33. Shani, U., Ben-Gal, A., Tripler, E., and Dudley, L. M.: Plant response to the soil en-
vironment: an analytical model integrating yield, water, soil type, and salinity, Water
Resour. Res., 43, W08418, doi:10.1029/2006WR005313, 2007.
34. Strauch, G.: Timescales and development of groundwater pollution by nitrate in
drinking water wells of the Jahna- Aue, Saxonia, Germany, Water Resour. Res., 42,
W121416, doi:10.1029/2006WR004977, 2006.
35. Thompson, R. B., Martinez-Gaitan, C., Gallardo, M., Gimenez, C., and Fernandez,
M. D.: Identification of irrigation and N management practices that contribute to
nitrate leaching loss from an intensive vegetable production system by use of a com-
prehensive survey, Agr. Water Manage., 89, 261-274, 2007.
 
Search WWH ::




Custom Search