Agriculture Reference
In-Depth Information
73. Schutter and Dick, 2000 M.E. Schutter, R.P. Dick Comparison of fatty acid methyl
ester (FAME) methods for characterizing microbial communities Soil Sci. Soc. Am.
J., 64 (2000), pp. 1659-1668
74. Senwo and Tabatabai, 1996 Z.N. Senwo, M.A. Tabatabai Aspartase activity of soils
Soil Sci. Soc. Am. J., 60 (1996), pp. 1416-1422
75. Seufert et al., 2012 V. Seufert, N. Ramankutty, J.A. Foley Comparing the yields of
organic and conventional agriculture Nature, 485 (2012), pp. 229-232
76. Sinsabaugh et al., 2005 R.L. Sinsabaugh, M.E. Gallo, C. Lauber, M.P. Waldrop,
D.R. Zak Extracellular enzyme activities and soil organic matter dynamics for north-
ern hardwood forests receiving simulated nitrogen deposition Biogeochemistry, 75
(2005), pp. 201-215
77. Sinsabaugh et al., 2008 R.L. Sinsabaugh, C.L. Lauber, M.N. Weintraub, B. Ahmed,
S.D. Allison, C. Crenshaw, A.R. Contosta, D. Cusack, S. Frey, M.E. Gallo, T.B.
Gartner, S.E. Hobbie, K. Holland, B.L. Keeler, J.S. Powers, M. Stursova, C. Takacs-
Vesbach, M.P. Waldrop, M.D. Wallenstein, D.R. Zak, L.H. Zeglin Stoichiometry of
soil enzyme activity at global scale Ecol. Lett., 11 (2008), pp. 1252-1264
78. Smukler et al., 2008 S.M. Smukler, L.E. Jackson, L. Murphree, R. Yokota, S.T.
Koike, R.F. Smith Transition to large-scale organic vegetable production in the Sali-
nas Valley, California Agric. Ecosyst. Environ., 126 (2008), pp. 168-188
79. Smukler et al., 2010 S.M. Smukler, S. Sánchez-Moreno, S.J. Fonte, H. Ferris, K.
Klonsky, A.T. O'Geen, K.M. Scow, K.L. Steenwerth, L.E. Jackson Biodiversity and
multiple ecosystem functions in an organic farmscape Agric. Ecosyst. Environ., 139
(2010), pp. 80-97
80. Soil Survey Staff, 2011 Soil Survey Staff, Natural Resources Conservation Service,
USDA Soil Survey Geographic (SSURGO) Database for Yolo Co., California (2011)
Available at: http://soildatamart.nrcs.usda.gov (accessed 06.03.11.)
81. Stromberger et al., 2012 M.E. Stromberger, A.M. Keith, O. Schimdt Distinct micro-
bial and faunal communities and translocated carbon in Lumbricus terrestris drilo-
spheres Soil Biol. Biochem., 46 (2012), pp. 155-162
82. Štursová and Baldrian, 2010 M. Štursová, P. Baldrian Effects of soil properties and
management on the activity of soil organic matter transforming enzymes and the
quantification of soil-bound and free activity Plant and Soil, 338 (2010), pp. 99-110
83. Syswerda et al., 2012 S.P. Syswerda, B. Basso, S.K. Hamilton, J.B. Tausig, G.P.
Robertson Long-term nitrate loss along an agricultural intensity gradient in the Up-
per Midwest USA Agric. Ecosyst. Environ., 149 (2012), pp. 10-19
84. Tabatabai, 1994 M. Tabatabai Soil enzymes R. Weaver, J. Angle, P. Bottomley
(Eds.), Methods of Soil Analysis, Part 2: Microbiological and Biochemical Proper-
ties, Soil Science Society of America, Madison, WI (1994), pp. 775-833
85. Tiemann and Billings, 2010 L.K. Tiemann, S.A. Billings Indirect effects of nitrogen
amendments on organic substrate quality increase enzymatic activity driving decom-
position in a mesic grassland Ecosystems, 14 (2010), pp. 234-247
86. Vance et al., 1987 E. Vance, P. Brookes, D. Jenkinson An extraction method for
measuring soil microbial biomass C Soil Biol. Biochem., 19 (1987), pp. 703-707
87. Vasseur et al., 2013 C. Vasseur, A. Joannon, S. Aviron, F. Burel, J.-M. Meynard, J.
Baudry The cropping systems mosaic: how does the hidden heterogeneity of agricul-
 
Search WWH ::




Custom Search