Environmental Engineering Reference
In-Depth Information
[35]
Kempe S., Liebezeit G., Dierks A.-R. and Asper V. Water balance in the Black Sea. Nature
1990; 346:419.
[36]
Kohnen M.E.L., Sinninghe Damste J.S., DeLeeuw J.W. Biases from natural sulphuriza-
tion in palaeoenvironmental reconstruction based on hydrocarbon biomarker distribution.
Nature 1991; 349:775-78.
[37]
Kohnen M.E.L., Schouten S., Sinninghe Damste J.S., DeLeeuw J.W., Merritt D.A. and
Hayes J.M. Recognition of paleochemicals by a combined molecular sulfur and isotope
geochemical approach. Science 1992; 256:358-62.
[38]
Konovalov S.K., Ivanov L.I., Samodurov A.S. Fluxes and budgets of sulphide and am-
monia in the Black Sea anoxic layer. J Mar Syst 2001; 31:203-16.
[39]
Konovalov S.K., Luther G.W., Friederich G.E., Nuzzio D.B., Tebo B.M., Murray J.W.,
Oguz T., Glazer B., Trouwborst R.E., Clement B., Murray K.J. and Romanov A.S. Lateral
injection of oxygen with the Bosporus plume - fingers of oxidizing potential in the Black
Sea. Limnol Oceanogr 2003; 48:2369-76.
[40]
Koopmans M.P., Koster J., van Kaam-Peters H.M.E., Kenig F., Schouten S., Hartgers
W.A., de Leeuw J.W. and Sinninghe Damste J.S. Diagenetic and catagenic products of
isorenieratene: Molecular indicators for photic zone anoxia. Geochim Cosmochim Acta
1996; 60:4467-96.
[41]
Kriss A.E. and Rukina E.A. Purple sulfur bacteria in deep sulfureous water of the Black
Sea. Dokl Akad Nauk SSSR 1953; 93:1107-10.
[42]
Littler M.M., Littler D.S., Blair S.M., Norris J.N. Deepest known plant life discovered on
an uncharted seamount. Science 1985; 227:57-59.
[43]
Lyons T.W., Werne J.P., Hollander D.J., Murray R.W. Contrasting sulfur geochemistry
and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin,
Venezuela. Chem Geol 2003; 195:131-57.
[44]
Manheim F.T. “Molybdenum.” In: Handbook of Geochemistry , Wedepohl K.H. ed.,
Springer-Verlag, 1974.
[45]
Manske A.K., Glaeser J. and Overmann J. Phylogenetic identification and low light limits
of green sulfur bacteria from the Black Sea chemocline, 2005a. (submitted)
[46]
Manske A.K. and Overmann J. Reconstruction of paleoceanography of the Black Sea
based on subfossil DNA of green sulfur bacteria, 2005b. (submitted)
[47]
Mas J., Pedr os-Alio C., Guerrero R. In situ specific loss and growth rates of purple sulfur
bacteria in Lake Ciso. FEMS Microbiol Ecol 1990; 73:271-81.
[48]
Montesinos E., Guerrero R., Abella C., Esteve I. Ecology and physiology of the competi-
tion for light between Chlorobium limicola and Chlorobium phaeobacteroides in natural
habitats. Appl Environ Microbiol 1983; 46:1007-16.
[49]
Murray J.W., Jannasch H.W., Honjo S., Anderson R.F., Reeburgh W.S., Top Z., Friederich
G.E., Codispoti L.A., Izdar E. Unexpected changes in the oxic/anoxic interface in the
Black Sea. Nature 1989; 338:411-13.
[50]
Overmann J. Standortspezifische Anpassung bei phototrophen Schwefelbakterien. Dis-
sertation der Universitat Konstanz, 1991. ISBN 3-89191-494-6.
[51]
Overmann J. Mahoney Lake: a case study of the ecological significance of phototrophic
sulfur bacteria. Adv Microbial Ecol 1997; 15:251-88.
[52]
Overmann J. and Tilzer M.M. Control of primary productivity and the significance of
photosynthetic bacteria in a meromictic kettle lake (Mittlerer Buchensee, West Germany).
Aquat Scie 1989; 51:261-78.
Search WWH ::




Custom Search