Environmental Engineering Reference
In-Depth Information
[4]
Boetius A., Ravenschlag K., Schubert C. J., Rickert D., Widdel F., Gieseke A., Amann R.,
Jorgensen B. B., Witte U. and Pfannkuche O. A marine microbial consortium apparently
mediating anaerobic oxidation of methane. Nature 2000; 407:623-26.
[5]
Canfield D. E., Raiswell R. and Bottrell S. H. The reactivity of sedimentary iron minerals
towards sulfide. Am J Sci 1992; 292:659-83.
[6]
Coolen M. J. and Overmann J. Functional exoenzymes as indicators of metabolically
active bacteria in 124,000-year-old sapropel layers of the eastern Mediterranean Sea.
Appl Environ Microbiol 2000; 66:2589-98.
[7]
Coolen M. J., Cypionka H., Sass A. M., Sass H. and Overmann J. Ongoing modification of
Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 2002; 296:2407-
10.
[8]
DeLong E. F. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992;
89:5685-89.
[9]
D'Hondt S., Rutherford S. and Spivack A. J. Metabolic activity of subsurface life in
deep-sea sediments. Science 2002; 295:2067-70.
[10]
Erba E. Nannofossils and superplumes: The early Aptian 'nannoconid crisis'. Paleo-
ceanography 1994; 9:483-501.
[11]
Fuhrman J. A., McCallum K. and Davis A. A. Novel major archaebacterial group from
marine plankton. Nature 1992; 356:148-49.
[12]
Fredrickson J. K. and Onstott T. C. “Biogeochemical and geological significance of sub-
surface microbiology.” In: Subsurface Microbiology and Biogeochemistry , Fredrickson J.
K., Fletcher M. eds., Wiley-Liss, Inc., 2001.
[13]
Hinrichs K. -U., Hayes J. M., Sylva S. P., Brewer P. G. and DeLong E. F. Methane-
consuming archaebacteria in marine sediments. Nature 1999; 398:802-05.
[14]
Inagaki F., Takai K., Komatsu T., Kanamatsu T., Fujioka K. and Horikoshi K. Archaeology
of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-
sea subseafloor environment. Extremophilies 2001; 5:385-92.
[15]
Inagaki F., Takai K., Komatsu T., Sakihama Y., Inoue A. and Horikoshi K. Profile of
microbial community structures and presence of endolithic microorganisms inside a deep-
sea rock. Geomicrobiol J 2002a; 19:535-52.
[16]
Inagaki F., Sakihama Y., Inoue A., Kato C. and Horikoshi K. Molecular phylogenetic
analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sedi-
ments. Environ Microbiol 2002b; 4:277-86.
[17]
Inagaki F., Suzuki M., Takai K., Oida H., Sakamoto T., Aoki K., Nealson K. H. and
Horikoshi K. Microbial community associated with geological horizons in coastal sub-
seafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 2003a; 69:7224-35.
[18]
Inagaki F., Takai K., Hirayama H., Yamato Y., Nealson K. H. and Horikoshi K. Distri-
bution and phylogenetic diversity of the subsurface microbial community in a Japanese
epithermal gold mine. Extremophiles 2003b; 7:307-17.
[19]
Inagaki F., Takai K., Kobayashi H., Nealson K. H. and Horikoshi K. Sulfurimonas au-
totrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated
from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol
2003c; 53:1801-05.
[20]
Inagaki F., Okada H., Tsapin A. I. and Nealson K. H. The Paleome: a sedimentary genetic
record of past microbial communities. Astrobiology 2005; 5:141-53.
Search WWH ::




Custom Search