Environmental Engineering Reference
In-Depth Information
[29]
Murray J.W., Jannasch H.W., Honjo S., Reeburgh W.S., Friederich G.E., Godispoti L.A.,
Anderson R.F., Top Z. and Izdar E. Unexpected changes in the oxic/anoxic interface in
the Black Sea. Nature 1989; 338:411-13.
[30]
Nealson K.H., Myers C.R. and Wimpee B.B. Isolation and identification of manganese-
reducing bacteria and estimates of microbial Mn(IV)-reducing potential in the Black Sea.
Deep-Sea Res 1991; 38(2):907-20.
[31]
Neretin L.N., Volkov I.I., Bottcher M.E and Grinenko V.A. A sulfur budget for the Black
Sea anoxic zone. Deep Sea Res I 2001; 48:2569-93.
[32]
Neretin L.N., Pohl C., Jost G., Leipe T. and Pollehne F. Manganese cycling in the Gotland
Deep, Baltic Sea. Mar Chem 2003; 82:125-43.
[33]
Nesterov A.I., Namsaraev B.B. and Borzenkov I.A. “Bacterial chemosynthesis in western
halistase of the Black Sea.” In: Variability of the Black Sea ecosystems , Vinogradov M.E.
ed., Nauka, 1991. (In Russian)
[34]
Oremland R.S. and Capone D.G. Use of “specific” inhibitors in biogeochemistry and
microbial ecology. Adv Microb Ecol 1988; 10:285-383.
[35]
Orphan V.J., Hinrichs K.U., Ussler W., Paull C.K., Taylor L.T., Sylva S.P., Hayes J.M and
DeLong E.F. Comparative analysis of methane-oxidizing archaea and sulfate-reducing
bacteria in anoxic marine sediments. Appl Environ Microbiol 2001; 67:1922-34.
[36]
Overmann J., Cypionka H. and Pfennig N. An extremely low-light-adapted phototrophic
sulfur bacterium from the Black See. Limnol Oceanogr 1992; 37(1):150-55.
[37]
Perry K.A., Kostka J.E., Luther III G.W. and Nealson K.H. Mediation of sulfur speciation
by a Black Sea facultative anaerobe. Nature 1993; 259:801-03.
[38]
Pimenov N.V., Nesterov A.I., Galchenko V.F. and Sokolova E.N. Effect of inhibitors
on carbon dioxide assimilation by different microorganisms. Microbiologiya 1990; 59
(1):26-34. (In Russian)
[39]
Pimenov N.V., Rusanov I.I., Yusupov S.K., Fridrich J., Lein A.Yu., Wehrli B. and Ivanov
M.V. Microbial processes at the aerobic-anaerobic interface in the deep-water zone of
the Black Sea. Microbiology 2000; 69(4):436-48. Translated from Microbiologiya 2000;
69(4):527-40.
[40]
Rabus R., Hansen T. and Widdel F. “Dissimilatory sulfate- and sulfur- reducing prokary-
otes.” In: The Prokaryotes. Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H. and
Stackebrandt E. eds., Release 3.3, electronic edition. Springer-Verlag, New-York, 2005.
[41]
Reeburgh W.S., Bess B.W., Whalen S.C., Sandbeck K.A. and Kilpatrick K.A. Black Sea
methane geochemistry. Deep-Sea Res 1991; 38(2):1189-210.
[42]
Repeta D.J. and Simpson D.J. The distribution and recycling of chlorophyll, bacteri-
ochlorophyll and carotenoids in the Black Sea. Deep-Sea Res 1991; 38:969-84.
[43]
Repeta D.J., Simpson D.J. and Jannasch H.W. Evidence for anoxygenic photosynthesis
from the distribution of bacteriochlorophylls in Black Sea. Nature 1989; 342:69-72.
[44]
Romanenko V.I. Heterotrophic assimilation of CO 2 by bacterial flora of water. Microbi-
ologiya 1964; 33:679-83. (In Russian)
[45]
Rozanov A.G. and Volkov I.I. “Manganese in the Black Sea. Modern notion of redox zone
vertical hydrochemical structure in the Black Sea.” In: Multidisciplinary investigations of
the northeast part of the Black Sea , Zatsepin A.G. and Flint M.V. eds., Nauka, Moscow,
2002.
Search WWH ::




Custom Search