Environmental Engineering Reference
In-Depth Information
[3]
Alperin M.J., Reeburgh W.S. and Whiticar M.I. Carbon and hydrogen isotope fractionation
resulting from anaerobic methane oxidation. Global biogeochemical cycles 1988; 2:279-
88.
[4]
Andrusov N.I. Preliminary report about participation in deep-water cruise. Izvestiya
Russkogo geographicheskogo obchestva, 1890; 26(5):25-38. (In Russian)
[5]
Berlin Yu.M., Bolshakov A.N., Verchovskaya Z.I., Egorov A.V., Marina M.M. and Trotsuk
V.Ya. “Methane in the Danube and Kisil-Ermak prodelta sediments.“ In Lithologiya i
Geochimiya osadkoobrazovaniya. Akad. Nauk SSSR, I. Okeanologii 1987; 116-126. (In
Russian)
[6]
Bezborodov A.A. and Eremeev L.G. Variability in structure of O 2 -H 2 S zone: dramatical
or synoptical. Morskoy Hydrophizicheskiy Zhurnal (Sevastopol) 1991; (1):59-68. (In
Russian)
[7]
Blinova V.N., Ivanov M.K. and Bohrman G. Study of hydrocarbon gases in deposits from
mud volcanoes in Sorokin Trench. Methane seepage, mud volcanoes and hydrates in the
Black Sea (2004). Leibniz-Institut fur Meereswissenschaften, Deutchland.
[8]
Bird D.F. and Karl D.M. Microbial biomass and population diversity in the upper water
column of the Black Sea. Deep Sea Res 1991; 38:1069-82.
[9]
Bologa A.S., Frangopol P.T., Vedernicov V.I., Stelmach L.V., Yunev O.A., Yilmaz A. and
Oguz T. “Distribution of planktonic primary production in the Black Sea.“ In Environ-
mental degradation at the Black Sea: challenges and remedies. Besiktepe S.T., Unliiata
U., Bologa A. eds., Kluwer Academic Publishers Dorchester, 1999.
[10]
Breas O., Guillou C., Lancelot C., Martin Y.-M., Mousty F. and Reniero F. Measurments
of the 13 C/ 12 C particulate and dissolved organic matter in the Black Sea and Danube river.
Joint Res. Centre-Ispra, Environ. Institute Ispra, Italy, 2000.
[11]
Byakov Y.A., Kruglyakova R.P. and Kruglyakov M.V. Gas hydrates of the Black Sea
sediment section: genesis, geophysical methods for their discovery and mapping. Gas in
marine sediments. Abstract topic of the 7th International conference. Baku, 2002; 24-26.
[12]
Calvert S.E, Thode H.D., Yeung D.A. and Karlin R.E. A stable isotope study of pyrite
formation in the Late Pleistocene and Holocene sediments of the Black Sea. Geochim
Cosmochim Ac 1996; 60:1261-70.
[13]
Canfield D.E. Isotope fractionation by natural populations of sulfate-reducing bacteria.
Geochim Cosmochim Ac 2001a; 65:1117-24.
[14]
Canfield D.E. “Biogeochemistry of sulphur isotopes.“ In Stable isotope geochemistry.
Valley J.W. and Cole D.R. eds., Review in Mineralogy and Geochemistry 2001; 43:607-
36.
[15]
Canfield D.E., Thamdrup B. and Fleischer S. Isotope fractionation and sulfur metabolism
by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. Limnol
Oceanogr 1998; 43:253-54.
Canfield D.E. and Thamdrup B. The production of 34 S-depleted sulfide during bacterial
disproportionation of elemental sulfur. Science 1994; 266:1973-75.
[16]
[17]
Canfield D.E., Raiswell R. and Bottrell S. The reactivity of sedimentary iron minerals
toward sulfide. Am J Sci 1992; 292:659-83.
[18]
Castro H.F., Williams N.H. and Ogram A. Phylogeny of sulfate-reducing bacteria. FEMS
Microbiol Ecol 2000; 31:1-9.
Search WWH ::




Custom Search