Environmental Engineering Reference
In-Depth Information
[14]
Brocks J. J., Logan G. A., Buick R. and Summons R. E. Archean molecular fossils and
the early rise of eukaryotes. Science 1999; 285:1033-36.
[15]
Brown M. M., Friez M. J. and Lovell C. R. Expression of nifH genes by diazotrophic
bacteria in the rhizosphere of short form Spartina alterniflora . FEMS Microbiol Ecol
2003; 43:411-17.
[16]
Buick R. The antiquity of oxygenic photosynthesis: evidence from stromatolites in
sulphate-deficient Archaean lakes. Science 1992; 255:74-77.
[17]
Burgess B. K. and Lowe D. J. Mechanism of molybdenum nitrogenase. Chem Rev 1996;
96:2983-3011.
[18]
Burke D. H., Hearst J. E. and Sidow A. Early evolution of photosynthesis-clues from
nitrogenase and chlorophyll iron proteins. P Natl Acad Sci USA 1993; 90:7134-38.
[19]
Canfield D. E. and Teske A. Late Proterozoic rise in atmospheric oxygen concentration
inferred from phylogenetic and sulphur-isotope studies. Nature 1996; 382:127-132.
[20]
Canfield D. E. A new model for Proterozoic ocean chemistry. Nature 1998; 396:450-53.
[21]
Capone D. G., Zehr J. P., Paerl H. W., Bergman B. and Carpenter E. J. Trichodesmium :a
globally significant marine cyanobacterium. Science 1997; 276:1221-29.
[22]
Carpenter E. J. Nitrogen fixation by marine Oscillatoria ( Trichodesmium ) in the world's
oceans. In: Nitrogen in the Marine Environment , Carpenter E. J. and Capone D. G. eds.,
New York: Academic Press, 1983.
[23]
Conley D. J., Humborg C., Rahm L., Savchuk O. P. and Wulff F. Hypoxia in the Baltic
Sea and basin-scale changes in phosphorus biogeochemistry. Environ Sci Technol 2002;
36:5315-20.
[24]
D'Alcala M. R., Civitarese G., Conversano F. and Lavezza R. Nutrient ratios and fluxes
hint at overlooked processes. J Geophys Res Oceans 2003; 108:Art. No 8106.
[25]
Des Marais D. J. and Walter M. R. Astrobiology: Exploring the origins, evolution, and
distribution of life in the Universe. Annu Rev Ecol Syst 1999; 30:397-420.
[26]
Deutsch C., Gruber N., Key R. M., Sarmiento J. L. and Ganachaud A. Denitrification and
N-2 fixation in the Pacific Ocean. Global Biogeochem Cy cles 2001; 15:483-506.
[27]
Dicker H. and Smith D. Effects of salinity on acetylene reduction (nitrogen fixation) and
respiration in a marine Azotobacter . Appl Environ Microbiol 1981; 42:740-44.
[28]
Dore J. E., Brum J. R., Tupas L. M. and Karl D. M. Seasonal and interannual variability in
sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean.
Limnol Oceanogr 2002; 47:1595-1607.
[29]
Eady R. R. Structure-function relationships of alternative nitrogenases. Chem Rev 1996;
96:3013-30.
[30]
Ehrlich H. L. Geomicrobiology , 2nd edn. New York City: Marcel Dekker, Inc., 1990.
[31]
Elmgren R. Understanding human impact on the Baltic ecosystem: Changing views in
recent decades. Ambio 2001; 30:222-31.
[32]
Falcon L. I., Carpenter E. J., Cipriano F., Bergman B. and Capone D. G. N 2 fixation by
unicellular bacterioplankton from the Atlantic and Pacific oceans: Phylogeny and in situ
rates. Appl Environ Microbiol 2004; 70:765-70.
[33]
Falkowski P. G. Evolution of the nitrogen cycle and its influence on the biological seques-
tration of CO 2
in the ocean. Nature 1997; 387:272-75.
[34]
Fani R., Gallo R. and Lio P. Molecular evolution of nitrogen fixation: The evolutionary
history of the nifD , nifK , nifE , and nifN genes. J Mol Evol 2000; 51:1-11.
Search WWH ::




Custom Search