Agriculture Reference
In-Depth Information
D
D
1
B
′′ =− +β−
1
v
av
fr
(
j
+
1)
fr
γ
(C5)
3
1
2
D
D
1
Ca vj
′′ =
fr
( )
+
fr
γ− β
v
(C6)
3
1
2
(
)
DD
1
j
j
j
j
Ec
′′ =− −
av
fr
j
fr
γ −+
c
2
cc
(C7)
i
3
i
+
1
i
i
1
Obviously, Equation C3 reduces to Equation A5 for D fr = .
For this case, the upper boundary conditions after discretization are
given by:
D
1
D
1
t
fr
t
fr
D
1
D
1
D
1
D
1
j
+
1
j
+
1
1
+
av
fr
(
j
+
1)
fr
c
a v
fr
( )
j
+
fr
c
=
c
,
3
1
3
2
0
x
x
(C8)
0( 1)
≤+ ≤
j
t
T
D
1
D
1
t
fr
t
fr
D
1
D
1
D
1
D
1
j
+
1
j
+
1
1
+
av
fr
(
j
+
1)
fr
c
a v
fr
( )
j
+
fr
c
=
0,
3
1
3
2
x
x
(C9)
( )
j
+>
t
T
where c 0 is the solute concentration in input pulse, and T is the pulse duration.
4.10 Appendix D: Derivations of Finite-Difference
Equations for CDE with a Nonlinearly
Distance-Dependent Dispersivity
For a parabolic dispersivity-distance model, the governing equation is
(Equation 4.28):
2
c
t
−− −
c
x
c
x
D
1
D
1
=
avx
fr
1(
aD
1)
x
fr
v
(D1)
4
4
fr
2
For convenience, we let
t
x
t
β=
,
ξ=
3
D fr
x
 
Search WWH ::




Custom Search