Information Technology Reference
In-Depth Information
This work is supported by the National Science Foundation of China (60703038,
30800287), the Excellent Young Teachers Program of Zhejiang University and the
Research Foundation of Center for the Study of Language and Cognition of Zhejiang
1. Lewicki, M.S.: A review of methods for spike sorting: the detection and classification of
neural action potentials. Network: Comput. Neural Syst. 9(4), R53-R78 (1998)
2. Mulgrew, B.: Applying radial basis functions. IEEE Signal Processing Magazine, 50-65
3. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for
Radial Basis Function Networks. IEEE Transactions on Neural Networks 2(2), 302-309
4. Sing, J.K., Basu, D.K., Nasipuri, M., Kundu, M.: Improved K-means Algorithm in the Design
of RBF Neural Networks. In: TENCON 2003. Conference on Convergent Technologies for
Asia-Pacific Region, vol. 2, pp. 841-845 (2003)
5. Pfurtscheller, G., Fischer, G.: A new approach to spike detection using a combination of
inverse and matched filter techniques. Electroencephalogr. Clin. Neurophysiol. 44(2),
243-247 (1978)
6. Chen, S., Wu, Y., Luk, B.L.: Combined genetic algorithm optimization and regularized or-
thogonal least squares learning for radial basis function networks. IEEE Transactions on
Neural Networks 10(5), 1239-1243 (1999)
7. Dai, J.H., Liu, X., Zhang, S., Zhang, H., Yi, Y., Wang, Q., Yu, S.Y., Chen, W., Zheng, X.:
Analysis of neuronal ensembles encoding model in invasive Brain-Computer Interface study
using Radial-Basis-Function Networks. In: Proceeding of the 2008 IEEE International Con-
ference on Granular Computing, pp. 172-177. IEEE Press, Los Alamitos (2008)
Search WWH ::

Custom Search