Biology Reference
In-Depth Information
References
Aon MA, Cortassa S, Maack C, O'Rourke B (2007) Sequential opening of mitochondrial ion
channels as a function of glutathione redox thiol status. J Biol Chem 282:21889-21900
Aon MA, Cortassa S, O'Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis.
Biochim Biophys Acta 1797:865-877
Hansen SH (2001) The role of taurine in diabetes and the development of diabetic complications.
Diabetes Metab Res Rev 17:330-346
Hansen SH, Andersen ML, Birkedal H, Cornett C, Wibrand F (2006) The important role of taurine
in oxidative metabolism. Adv Exp Med Biol 583:129-135
Hansen SH, Andersen ML, Cornett C, Gradinaru R, Grunnet N (2010) A role for taurine in
mitochondrial function. J Biomed Sci 17(Suppl 1):S23
Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865-1879
Jones DP, Go YM (2010) Redox compartmentaliżation and cellular stress. Diabetes Obes Metab
12(Suppl 2):116-125
Jong CJ, Ito T, Mozaffari M, Azuma J, Schaffer S (2010) Effect of beta-alanine treatment on mito-
chondrial taurine level and 5-taurinomethyluridine content. J Biomed Sci 17(Suppl 1):S25
Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine:
prevention of mitochondrial oxidant production. Amino Acids 42:2223-2232
Mailloux RJ, Seifert EL, Bouillaud F, Aguer C, Collins S, Harper ME (2011) Glutathionylation acts
as a control switch for uncoupling proteins UCP2 and UCP3. J Biol Chem 286:21865-21875
Meister A (1995) Mitochondrial changes associated with glutathione deficiency. Biochim Biophys
Acta 1271:35-42
Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Glynn
Research Laboratories, Bodmin, Cornwall, England
Mitchell P, Moyle J (1967) Titration across the membrane system of rat-liver mitochondria.
Biochem J 104:588-600
Mitchell P (1968) Chemiosmotic coupling and energy transduction. Glynn Research Laboratories,
Bodmin, Cornwall, England
Murphy MP (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct
roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16:476-495
Nicholls DG (1974) The influence of respiration and ATP hydrolysis on the proton-electrochemical
gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution.
Eur J Biochem 50:305-315
Nicholls DG, Ferguson SJ (2002) Bioenergetics 3, Academic Press, an imprint of Elsevier Science.
Elsevier Science, San Diego, CA
Rabenstein DL (1973) Nuclear magnetic resonance studies of the acid-base chemistry of amino
acids and peptides I. Microscopic ionization constants of glutathione and methylmercury-
complexed glutathione. J Am Chem Soc 95:2797-2803
Requejo R, Hurd TR, Costa NJ, Murphy MP (2010) Cysteine residues exposed on protein surfaces
are the dominant intramitochondrial thiol and may protect against oxidative damage. FEBS J
277:1465-1480
Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state
of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191-1212
Selivanov VA, Zeak JA, Roca J, Cascante M, Trucco M, Votyakova TV (2008) The role of external and
matrix pH in mitochondrial reactive oxygen species generation. J Biol Chem 283:29292-29300
Slodzinski MK, Aon MA, O'Rourke B (2008) Glutathione oxidation as a trigger of mitochondrial
depolarization and oscillation in intact hearts. J Mol Cell Cardiol 45:650-660
Wahllander A, Soboll S, Sies H, Linke I, Müller M (1979) Hepatic mitochondrial and cytosolic glu-
tathione content and the subcellular distribution of GSH-S-transferases. FEBS Lett 97:138-140
Wei AC, Aon MA, O'Rourke B, Winslow RL, Cortassa S (2011) Mitochondrial Energetics,
pH Regulation, and Ion Dynamics: a Computational-Experimental Approach. Biophys J
100:2894-2903
Search WWH ::




Custom Search