Information Technology Reference
In-Depth Information
where
E = r u ,[ A ; b ] T [ A ; b ]
(4.25)
and k = E /∂ u n + 1 u n + 1 =− 1 . In the critical points x c ;−
1 T
is E TLS ( u )
of the
RQ, 1
corresponding to the singular values
σ c of [ A ; b ] (i.e., the eigenvalues
c of [ A ; b ] T [ A ; b ]) the Hessian matrix is
λ c = σ
A T A σ
2
1 + x c x c
2
A T b
c I n
H TLS
=
b T A
b T b σ
c
A T A σ
c I n x c
A T A σ
2
c I n
2
2
1 + x c x c
n
1
syst .( 1 . 18 )
=
b T A
b T Ax c
(4.26)
n
1
So H TLS is singular because the ( n + 1 ) th column is a linear combination (by
x c )ofthefirst n columns. The n × n submatrix
1 + x c x c A T A σ
c I n
2
h TLS =
2
(4.27)
is positive definite in the critical point corresponding to the minimum
eigenvalue. Indeed, respecting the notation of Section 1.3, given the EVD of
A T A = V V T ,where = diag σ 1 , σ 2 , ... , σ n , eq. (4.27) yields
1 + x c x c V σ
c I n V T
2
h TLS =
2
(4.28)
Recalling the interlacing property (Theorem 6),
σ 1 σ 1 ≥···≥ σ n σ n σ n + 1
(4.29)
σ n > σ
if the TLS existence condition
1 is valid, then in the TLS hyperplane,
all critical points are a maximum (negative semidefinite Hessian matrix), saddles
(indefinite Hessian matrix), and a minimum (positive definite Hessian matrix) .
The submatrix h TLS is the Hessian matrix of the TLS cost function,
n
+
T
E TLS ( x ) = ( Ax b )
( Ax b )
1 + x T x
= E TLS ( u )
(4.30)
n . Indeed,
as a function of x
1 + x T x A T
( Ax b ) xE TLS
2
x E TLS ( x ) =
(4.31)
1 At the critical point the RQ assumes the value of the corresponding eigenvalue (see Proposition
43).
Search WWH ::




Custom Search