Agriculture Reference
In-Depth Information
3. De Brabander, H.; Noppe, H.; Verheyden, K.; VandenBussche, L.; Wille, K.; Okerman, L.;
Vanhaecke, L.; Reybroeck, W.; Ooghe, S.; Croubels, S. Residue analysis: future trends
from a historical perspective. J. Chromatogr. A 2009 , 1216, 7964-7976.
4. Verdon, E. Antibiotic residues in muscle tissues of edible animal products. In: L.M.L.
Nollet and F. Toldra, editors. Handbook of Muscle Tissues of Edible Animal Products .
CRC Press; 2009 , pp. 855-947.
5. Makarov, A.; Denisov, E.; Lange, O.; Horning, S. Dynamic range of mass accuracy in LTQ
Orbitrap hybrid mass spectrometer. J. Am. Soc. Mass Spectrom. 2006 , 17, 977.
6. Peters, R.J.; Bolck, Y.J.; Rutgers, P.; Stolker, A.A.; Nielen, M.W. Multi-residue
screening of veterinary drugs in egg, fish and meat using high-resolution liquid chroma-
tography accurate mass time-of-flight mass spectrometry. J. Chromatogr. A 2009 , 1216,
8206-8216.
7. Kellmann, M.; Muenster, H.; Zomer, P.; Mol, H., Full scan MS in comprehensive
qualitative and quantitative residue analysis in food and feed matrices: howmuch resolving
power is required? J. Am. Soc. Mass Spectrom. 2009 , 20, 1464.
8. Erve, J.C.L.; Gu, M.; Wang, Y.; DeMaio, W.; Talaat, R.E. Spectral accuracy of molecular
ions in an LTQ/Orbitrap mass spectrometer and implications for elemental composition
determination. J. Am. Soc. Mass Spectrom. 2009 , 20, 2058.
9. Kaiser, N.K.; Quinn, J.P.; Blakney, G.T.; Hendrickson, C.L.; Marshall, A.G. A novel 9.4
Tesla FTICR mass spectrometer with improved sensitivity, mass resolution, and mass
range. J. Am. Soc. Mass Spectrom. 2011 , 22, 1343-1351.
10. Sanders, M.A.; Shipkova, P.; Zhang, H.; Warrack, B.M. Utility of the hybrid LTQ-FTMS
for drug metabolism applications. Curr. Drug Metab. 2006 ,7-5, 547-555.
11. Chen, C.H.W. Review of a current role of mass spectrometry for proteome research. Anal.
Chim. Acta 2008 , 624, 16-36.
12. Han, J.; Danell, R.M.; Patel, J.R.; Gumerov, D.R.; Scarlett, C.O.; Speir, J.P.; Parker, C.E.;
Rusyn, I.; Zeisel, S.; Borchers, C.H. Towards high-throughput metabolomics using
ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolo-
mics 2008 , 4, 128-140.
13. Kang, H.J.; Yang, H.J.; Kim, M.J.; Han, E.S.; Kim, H.J.; Kwon, D.Y. Metabolomic
analysis of meju during fermentation by ultra performance liquid chromatography-
quadrupole-time of flight mass spectrometry (UPLC-Q-TOF MS). Food Chem . 2011 ,
127, 1056-1064.
14. Dervilly-Pinel, G.; Weigel, S.; Lommen, A.; Chereau, S.; Rambaud, L.; Essers, M.;
Antignac, J.P.; Nielen, M.; Le Bizec, B. Assessment of two complementary LC-HRMS
metabolomics strategies for the screening of anabolic steroid treatment in calves. Anal.
Chim. Acta 2011 , 700, 144-154.
15. Vanhaecke, L.; Van Meulebroek, L.; De Clerq, N.; Vanden Bussche, J. High resolution
Orbitrap mass spectrometry in comparison with tandem mass spectrometry for con rma-
tion of anabolic steroids in meat. Anal. Chim. Acta 2013 , 767, 118-127.
16. Codex veterinary drug residues in food. Available at http://www.codexalimentarius.org/
standards/veterinary-drugs-mrls/en/
17. Regulation (EU) No. 37/2010 of 22 December 2010 on pharmacologically active sub-
stances and their classification regarding maximum residue limits in foodstuffs of animal
origin. Off. J. Eur. Union 2009 , L15, 1-72.
Search WWH ::




Custom Search