Biomedical Engineering Reference
In-Depth Information
reFerenCeS
Bayraktar, H. H., E. F. Morgan, G. L. Niebur, G. Morris, E. Wong, and T. Keaveny. 2004. Comparison of the
elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37:27-35.
Bessho, M., I. Ohnishi, J. Matsuyama, T. Matsumoto, K. Imai, and K. Nakamura. 2007. Prediction of strength
and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745-53.
Cody, D. D., F. J. Hou, G. W. Divine, and D. P. Fyhrie. 2000. Femoral structure and stiffness in patients with
femoral neck fracture. J Orthop Res 18:443-8.
Gong, H., M. Zhang, and Y. Fan. 2011. Micro-finite element analysis of trabecular bone yield behavior: effects
of tissue non-linear material properties. J Mech Med Biol 11(3):563-80.
Gong, H., M. Zhang, Y. Fan, W. L. Kwok, and P. C. Leung. 2012. Relationships between femoral strength
evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphol-
ogy. Ann Biomed Eng 40(7):1575-85.
Gong, H., M. Zhang, L. Qin, and Y. Hou. 2007. Regional variations in the apparent and tissue-level mechanical
parameters of vertebral trabecular bone with aging using micro-finite element analysis. Ann Biomed Eng
35(9):1622-31.
Keaveny, T. M., D. L. Kopperdahl, L. J. Melton III, P. F. Hoffmann, S. Amin, B. L. Riggs, and S. Khosla. 2010.
Age-dependence of femoral strength in white women and men. J Bone Miner Res 25(5):994-1001.
Keyak, J. H. 2001. Improved prediction of proximal femoral fracture load using nonlinear finite element
models. Med Eng Phys 23:165-73.
Keyak, J. H., T. S. Kaneko, J.Tehranzadeh, and H. B. Skinner. 2005. Predicting proximal femur strength using
structural engineering models. Clin Orthop Relat Res 437:219-28.
Keyak, J. H., S. A. Rossi, K. A. Jones, and H. B. Skinner. 1998. Prediction of femoral fracture load using
automated finite element modeling. J Biomech 31:125-33.
Keyak, J. H., H. B. Skinner, and J. A. Fleming. 2001. Effect of force direction on femoral fracture load for two
types of loading conditions. J Orthop Res 19:539-44.
Lv, L., G. Meng, H. Gong, D. Zhu, and W. Zhu. 2012. A new method for the measurement and analysis of
three-dimensional morphological parameters of proximal male femur. Biomed Res 23(2):219-26.
Peng, L., J. Bai, X. Zeng, and Y. Zhou. 2006. Comparison of isotropic and orthotropic material property assign-
ment on femoral finite element models under two loading directions. Med Eng Phys 28:227-33.
Perillo-Marcone, A., A. Alonso-Wazquez, and M. Taylor. 2003. Assessment of the effect of mesh density on the
material property discretisation within QCT based FE models: a practical example using the implanted
proximal tibia. Comput Meth Biomech Biomed Eng 6(1):17-26.
Schileo, E., F. Taddei, L. Cristofolini, and M. Viceconti. 2008. Subject-specific finite element models imple-
menting a maximum principal strain criterion are able to estimate failure risk and fracture location on
human femurs tested in vitro. J Biomech 41: 356-67.
Seeman, E., and P. D. Delmas. 2006. Bone quality: the material and structural basis of bone strength and
fragility. New Engl J Med 354:2250-61.
van Rietbergen, B., A. Odgaard, J. Kabel, and R. Huiskes. 1998. Relationship between bone morphology and
bone elastic properties can be accurately quantified using high-resolution computer reconstructions.
J Orthop Res 16:23-8.
Verhulp, E., B. van Rietbergen, and R. Huiskes. 2008. Load distribution in the healthy and osteoporotic human
proximal femur during a fall to the side. Bone 42:30-5.
Viceconti, M., S. Olsen, L. P. Nolte, and K. Burton. 2005. Extracting clinically relevant data from finite element
simulations. Clin Biomech 20:451-4.
Wirtz, D. C., T. Pandorf, F. Portheine, K. Radermacher, N. Schiffers, A. Prescher, D. Weichert, and F. U.
Niethard. 2003. Concept and development of an orthotropic FE model of the proximal femur. J Biomech
36(2):289-93.
Search WWH ::




Custom Search