Agriculture Reference
In-Depth Information
101. Meldau, S.; Baldwin, I.T.; Wu, J. SGT1 regulates wounding- and herbivory-induced
jasmonic acid accumulation and nicotiana attenuata's resistance to the specialist
lepidopteran herbivore Manduca sexta. New Phytol. 2011, 189, 1143-1156.
102. Yang, D.; Hettenhausen, C.; Baldwin, I.T.; Wu, J. BAK1 regulates the accumulation
of jasmonic acid and the levels of trypsin proteinase inhibitors in Nicotiana attenu-
ata's responses to herbivory. J. Exp. Bot. 2011, 62, 641-652.
103. McDonald, B.A.; Linde, C. Pathogen population genetics, evolutionary potential,
and durable resistance. Annu. Rev. Phytopathol. 2002, 40, 349-379.
104. Castro, A.J.; Chen, X.M.; Hayes, P.M.; Johnston, M. Pyramiding Quantitative trait
locus (QTL) alleles determining resistance to barley stripe rust: Effects on resistance
at the seedling stage. Crop Sci. 2003, 43, 651-659.
105. Singh, S.; Sidhu, J.S.; Huang, N.; Vikal, Y.; Li, Z.; Brar, D.S.; Dhaliwal, H.S.;
Khush, G.S. Pyramiding three bacterial blight resistance genes (xa5, xa13 and xa21)
using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet.
2001, 102, 1011-1015.
106. Grube, R.C.; Radwanski, E.R.; Jahn, M. Comparative genetics of disease resistance
within the Solanaceae. Genetics 2000, 155, 873-887.
107. Liu, J.; Liu, D.; Tao, W.; Li, W.; Wang, S.; Chen, P.; Cheng, S.; Gao, D. Molecular
marker-facilitated pyramiding of different genes for powdery mildew resistance in
wheat. Plant Breed. 2000, 119, 21-24.
108. Déry, P.; Anderson, B. Peak Phosphorus. Energy Bull. 2007. Published online: 13
August 2007. http://www.energybulletin.net/node/33164.
109. Smit, A.L.; Bindraban, P.S.; Schröder, J.J.; Conijn, J.G.; van der Meer, H.G. Phos-
phorus in Agriculture Global Resources, Trends, and Development; Plant Research
International: Wageningen, The Netherlands, 2009.
110. Nielsen, K.L.; Eshel, A.; Lynch, J.P. The effect of phosphorus availability on the
carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J.
Exp. Bot. 2001, 52, 329-339.
111. Williamson, L.C.; Ribrioux, S.P.C.P.; Fitter, A.H.; Leyser, H.M.O. Phosphate avail-
ability regulates root system architecture in Arabidopsis. Plant Physiol. 2001, 126,
875-882.
112. Lynch, J.P.; Brown, K.M. Topsoil foraging—An architectural adaptation of plants to
low phosphorus availability. Plant Soil 2001, 237, 225-237.
113. Perez-Torres, C.; Lopez-Bucio, J.; Cruz-Ramirez, A.; Ibarra-Laclette, E.; Dharma-
siri, S.; Estelle, M.; Herrera-Estrella, L. Phosphate availability alters lateral root de-
velopment in Arabidopsis by modulating auxin sensitivity via a mechanism involv-
ing the TIR1 auxin receptor. Plant Cell 2008, 20, 3258-3272.
114. Liao, H.; Rubio, G.; Yan, X.L.; Cao, A.Q.; Brown, K.M.; Lynch, J.P. Effect of phos-
phorus availability on basal root shallowness in common bean. Plant Soil 2001, 232,
69-79.
115. Jungk, A. Root hairs and the acquisition of plant nutrients from soil. J. Plant Nutr.
Soil Sci. 2001, 164, 121-129.
116. Narang, R.A.; Bruene, A.; Altmann, T. Analysis of phosphate acquisition efficiency
in different Arabidopsis accessions. Plant Physiol. 2000, 124, 1786-1799.
 
Search WWH ::




Custom Search