Agriculture Reference
In-Depth Information
ter use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt
tolerance gene. Proc. Natl. Acad. Sci. USA 2007, 104, 15270-15275.
52. Bouchabke-Coussa, O.; Quashie, M.; Seoane-Redondo, J.; Fortabat, M.; Gery, C.;
Yu, A.; Linderme, D.; Trouverie, J.; Granier, F.; Teoule, E.; et al. ESKIMO1 is a key
gene involved in water economy as well as cold acclimation and salt tolerance. BMC
Plant Biol. 2008, 8, 125-151.
53. Lefebvre, V.; Fortabat, M.; Ducamp, A.; North, H.M.; Maia-Grondard, A.; Trouv-
erie, J.; Boursiac, Y.; Mouille, G.; Durand-Tardif, M. ESKIMO1 disruption in Arabi-
dopsis alters vascular tissue and impairs water transport. PLoS One 2011, 6, e16645.
54. Reynolds, M.; Tuberosa, R. Translational research impacting on crop productivity in
drought-prone environments. Curr. Opin. Plant Biol. 2008, 11, 171-179.
55. Franks, S.J. Plasticity and evolution in drought avoidance and escape in the annual
plant Brassica rapa. New Phytol. 2011, 190, 249-257.
56. Bouchabke, O.; Chang, F.; Simon, M.; Voisin, R.; Pelletier, G.; Durand-Tardif,
M. Natural variation in Arabidopsis thaliana as a tool for highlighting differential
drought responses. PLoS One 2008, 3, e1705.
57. Duncan, R.C.; Youngquist, W. Encircling the peak of world oil production. Natl.
Resour. Res. 1999, 8, 219-232.
58. Baligar, V.; Fageria, N.; He, Z. Nutrient use efficiency in plants. Commun. Soil Sci.
Plant Anal. 2001, 32, 921-950.
59. USDA. Consumption of Plant Nutrients; United States Department of Agriculture:
Washington, DC, USA, 2011.
60. Peterson, T.A.; Russelle, M.P. Alfalfa and the nitrogen-cycle in the corn belt. J. Soil
Water Conserv. 1991, 46, 229-235.
61. Pfieffer, D.A. Eating Fossil Fuels: Oil, Food and the Coming Crisis in Agriculture;
New Society Publishers: Gabriola, Canada, 2006.
62. Dawson, J.C.; Huggins, D.R.; Jones, S.S. Characterizing nitrogen use efficiency in
natural and agricultural ecosystems to improve the performance of cereal crops in
low-input and organic agricultural systems. Field Crops Res. 2008, 107, 89-101.
63. Bertin, P.; Gallais, A. Genetic variation for nitrogen use efficiency in a set of recom-
binant maize inbred lines I. Agrophysiological results. Maydica 2000, 45, 53-66.
64. Gallais, A.; Hirel, B. An approach to the genetics of nitrogen use efficiency in maize.
J. Exp. Bot. 2004, 55, 295-306.
65. Gallais, A.; Coque, M. Genetic variation and selection for nitrogen use efficiency in
maize: A synthesis. Maydica 2005, 50, 531-547.
66. Basra, A.S.; Goyal, S.S. Mechanisms of Improved Nitrogen-use Efficiency in Cere-
als. In Quantitative Genetics, Genomics and Plant Breeding; Kang, M.S., Ed.; CABI
Publishing: Oxfordshire, UK, 2002; p. 288.
67. Hirel, B.; Bertin, P.; Quillere, I.; Bourdoncle, W.; Attagnant, C.; Dellay, C.; Gouy,
A.; Cadiou, S.; Retailliau, C.; Falque, M.; et al. Towards a better understanding
of the genetic and physiological basis for nitrogen use efficiency in maize. Plant
Physiol. 2001, 125, 1258-1270.
68. Duncan, R.R.; Baligar, V.C. Genetics Breeding and Physiological Mechanisms of
Nutrient Uptake and use Efficiency an Overview. In Crop as Enhancers of Nutrient
Use; Academic Press: San Deigo, CA, USA, 1990; p. 36.
 
Search WWH ::




Custom Search