Agriculture Reference
In-Depth Information
38. Ding GC, Smalla K, Heuer H, Kropf S (2012) A new proposal for a principal compo-
nent-based test for high-dimensional data applied to the analysis of PhyloChip data.
Biom J 54: 94-107. doi: 10.1002/bimj.201000164
39. Entry JA, Fuhrmann JJ, Sojka RE, Shewmaker GE (2004) Influence of irrigated
agriculture on soil carbon and microbial community structure. Environ Manage 33:
S363-S373. doi: 10.1007/s00267-003-9145-y
40. Islam MR, Trivedi P, Palaniappan P, Reddy MS, Sa T (2009) Evaluating the effect of
fertilizer application on soil microbial community structure in rice based cropping
system using fatty acid methyl esters (FAME) analysis. World J Microb Biot 25:
1115-1117. doi: 10.1007/s11274-009-9959-8
41. Lo CC (2010) Effect of pesticides on soil microbial community. J Environ Sci Health
B 45: 348-359. doi: 10.1080/03601231003799804
42. Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent ef-
fects of nitrogen fertilization on soil bacterial communities in contrasting systems.
Ecology 91: 3463-3470. doi: 10.1890/10-0426.1
43. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, et al. (2001) Bulk and rhizo-
sphere soil bacterial communities studied by denaturing gradient gel electrophore-
sis: Plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microb
67: 4742-4751. doi: 10.1128/aem.67.10.4742-4751.2001
44. Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, et al. (2006) Effects of site and plant
species on rhizosphere community structure as revealed by molecular analysis of micro-
bial guilds. FEMS Microbiol Ecol 56: 236-249. doi: 10.1111/j.1574-6941.2005.00026.x
45. Costa R, Salles JF, Berg G, Smalla K (2006) Cultivation-independent analysis of Pseu-
domonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host
plants. Environ Microbiol 8: 2136-2149. doi: 10.1111/j.1462-2920.2006.01096.x
46. Costa R, Gomes NC, Krögerrecklenfort E, Opelt K, Berg G, et al. (2007) Pseudo-
monas community structure and antagonistic potential in the rhizosphere: insights
gained by combining phylogenetic and functional gene-based analyses. Environ Mi-
crobiol 9: 2260-2273. doi: 10.1111/j.1462-2920.2007.01340.x
47. DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, et al. (2009)
Selective progressive response of soil microbial community to wild oat roots. ISME
J 3: 168-178. doi: 10.1038/ismej.2008.103
48. Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PG, van Veen JA (2002) Ef-
fects of above-ground plant species composition and diversity on the diver-
sity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81: 509-520. doi:
10.1023/a:1020565523615
49. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, et al. (2011) Deci-
phering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:
1097-1100. doi: 10.1126/science.1203980
50. Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2008) Differences in vegetation
composition and plant species identity lead to only minor changes in soil-borne mi-
crobial communities in a former arable field. FEMS Microbiol Ecol 63: 372-382.
doi: 10.1111/j.1574-6941.2007.00428.x
51. Totsche KU, Rennert T, Gerzabek MH, Kögel-Knabner I, Smalla K, et al. (2010)
Biogeochemical interfaces in soil: The interdisciplinary challenge for soil science. J
Plant Nutr Soil Sci 173: 88-99. doi: 10.1002/jpln.200900105
 
Search WWH ::




Custom Search