Chemistry Reference
In-Depth Information
Scheme 1.22
Diastereoselective synthesis of β -amino acids 73.
OPiv
PivO
OPiv
PivO
R 1
R 3
R 1
OTMS
R 3
R 3
AgOTf
2,6-lutidine
CH 2 Cl 2
-40
O
O
N
OR 4
R 2 +
N
+
PivO
PivO
R 3
OR 4
PivO
Br
PivO
R 2
74
75
76
O
20 °C
77
R 1 = Et, R 2 = Ph, R 3 = Et, R 4 = Me, 68% (R), 18% (S) 4:1 dr
R 1 = Et, R 2 = Ph, R 3 = Me, R 4 = Me, 48% (R), 17% (S) 3:1 dr
R 1 = Et, R 2 = Ph, R 3 = -(CH 2 ) 5 -, R 4 = Et, 63% (R), 23% (S) 3:1 dr
R 1 = Et, R 2 = 4-NO 2 -Ph, R 3 = Et, R 4 = Me, 53% (R), 7% (S) 8:1 dr
R 1 = Et, R 2 = 3,4(MeO) 2 Ph, R 3 = Et, R 4 = Me, 68% (R), 24% (S) 3:1
dr
R 1 = Ph, R 2 = Ph, R 3 = Et, R 4 = Me, 88% 3:1 dr
R 1 = All, R 2 = Ph, R 3 = Et, R 4 = Me, 70% (R), 18% (S) 4:1 dr
R 1 = Bn, R 2 = Ph, R 3 = Et, R 4 = Me, 37% (R), 30% (S) 5:4 dr
Scheme 1.23
Diastereoselective synthesis of β -amino acid esters via an in situ glycosylation
method.
In 1989, Kunz reported the stereoselective tandem Mannich-Michael reactions
for the synthesis of piperidine alkaloids again using galactosylamine 3 as an effec-
tive chiral auxiliary [36]. A subsequent publication described how the N -galactosyl
aldimines 5 react with silyl dienol ether 81 in the presence of zinc chloride
in tetrahydrofuran at
20 °C to give the Mannich bases 82/83 with high
diastereoselectivities. The Michael addition then occurs to give the dehydropiperi-
dones 84/85 in high yields upon hydrolysis with 1M HCl (Scheme 1.25) [37].
OPiv
PivO
OPiv
PivO
Et
OTMS
75
O
O
Et
OMe
sN
+
PivO
PivO
N
PivO
O
AgOTf
2,6-lutidine,CH 2 Cl 2
PivO Br
Et
Et
OMe
74
78
80
dr 13:1
yield: 69% (R); 6% (S)
Scheme 1.24
Diastereoselective synthesis of β -amino acid ester 80 from dihydroquinoline 78.
Search WWH ::




Custom Search