Chemistry Reference
In-Depth Information
synthesis of both enantiomers of a desired cyclopropane subunit and recovery of
the chiral auxiliary. With regard to epoxidation, even though the advances made
in this area using carbohydrates as chiral auxiliaries are relevant, this method is
far from competing with the efficiency of catalytic approaches developed so far. In
the case of chiral sulfoxides, for which a general enantioselective approach is still
missing, the DAG methodology is one of the best methods developed so far for
the synthesis of this interesting class of molecules. Using diacetone-d-glucose as
a single chiral auxiliary, both enantiomers of a large number of chiral sulfinyl
derivatives have been obtained with good yields and enantioselectivities in an
enantiodivergent manner, by a simple change of the tertiary amine used to catalyze
the reaction. Another important feature of the DAG methodology is that the forma-
tion of sulfinate ester intermediates takes place with dynamic kinetic resolution of
the starting sulfinyl chlorides. While not as general as for the synthesis of chiral
sulfinyl derivatives, the DAG methodology works equally well for the enantiodi-
vergent synthesis of P-chiral phosphine oxides and phosphines. The wide range
of structures reported to date demonstrates that the basis for the synthesis of this
interesting class of molecules is now established and further challenges are ready
to be undertaken in the near future.
References
1 (a) Djerassi, C. and Doss, G.A. (1990)
New J. Chem. , 14 , 713; (b) Salaün, J.
(1995) Curr. Med. Chem. , 2 , 511;
(c) Salaün, J. (2000) Top. Curr. Chem. ,
207 , 1; (d) Faust, R. (2001) Angew. Chem.
Int. Ed. , 40 , 2251.
2 (a) de Meijere, A. (1979) Angew. Chem.
Int. Ed. Engl. , 18 , 809; (b) Arlt, D.,
Jautelat, M., and Lantzsch, R. (1981)
Angew. Chem. Int. Ed. Engl. , 20 , 703;
(c) de Meijere, A. and Wessjohann, L.
(1990) Synlett , 20; (d) Wiberg, K.B. (1996)
Acc. Chem. Res. , 29 , 229.
3 For recent reviews on the stereoselective
synthesis of cyclopropanes see: (a) Lebe,
H., Marcoux, J.-F., Molinaro, C., and
Charette, A.B. (2003) Chem. Rev. , 103 ,
977; (b) Pellissier, H. (2009) Tetrahedron ,
65 , 2839.
4 (a) Simmons, H.E. and Smith, R.D.
(1958) J. Am. Chem. Soc. , 80 , 5323;
(b) Simmons, H.E. and Smith, R.D.
(1959) J. Am. Chem. Soc. , 81 , 4256.
5 Charette, A.B., Côté, B., and Marcoux, J.-F.
(1991) J. Am. Chem. Soc. , 113 , 8166-8167.
6 Charette, A.B., Turcotte, N., and
Marcoux, J.-F. (1994) Tetrahedron Lett. ,
35 , 513.
7 Charrette, A.B. and Côté, B. (1993)
J. Org. Chem. , 58 , 933.
8 Charrette, A.B. and Côté, B. (1995)
J. Am. Chem. Soc. , 117 , 12721.
9 Kang, J., Lim, G.J., Yoon, S.K., and Kim,
M.Y. (1995) J. Org. Chem. , 60 , 564.
10 Vega-Pérez, J.M., Periñan, I., Vega, M.,
and Iglesias-Guerra, F. (2008)
Tetrahedron: Asymmetry , 19 , 1720.
11 Vega-Pérez, J.M., Periñan, I., Vega, M.,
and Iglesias-Guerra, F. (2009)
Tetrahedron: Asymmetry , 20 , 1065.
12 Ferreira, V.F., Leao, R.A.C., da Silva,
F.C., Pinheiro, S., Lhoste, P., and Sinou,
D. (2007) Tetrahedron: Asymmetry , 18 ,
1217.
13 A review on enantioselective asymmetric
epoxidation: Xia, Q.-H., Ge, H.-Q., Ye,
C.-P., Liu, Z.-M., and Su, K.-X. (2005)
Chem. Rev. , 105 , 1603; review on
chiral-auxiliary-controlled asymmetric
epoxidation: Adamas, W. and Zhang, A.
(2005) Synlett , 1047.
14 (a) Hodgson, D.M., Gibbs, A.R., and Lee,
G.P. (1996) Tetrahedron , 52 , 14361;
(b) Jacobsen, E.N. (2000) Acc. Chem. Res. ,
33 , 421; (c) Adam, W. and Bargon, R.M.
(2004) Chem. Rev. , 104 , 251.
Search WWH ::




Custom Search