Chemistry Reference
In-Depth Information
0
50
100
150
2 0 0
1.0
1.0
n A
0.8
0.8
n C
k A = 10 s -1
0.6
0.6
0.4
0.4
0.2
0.2
k B = 100 s -1
k B = 20 s -1
n B
0.0
0.0
0
50
100
150
200
Reaction time in ms
FIGURE 3.25 Example of consecutive chemical reactions of first order. Shown is the con-
sumption of the particles A with k A
10 s 1 , and the formation the final product C via the
intermediate product B for two selected reaction coefficients, k B =
=
100 s 1 and k B =
20 s 1 .
The rate equations are solved elementary with initial conditions n A (
0
)
and
n B (
0
) =
n C (
0
) =
0.
exp
t .
k ( 1 )
A
n A (
t
) =
n A (
0
) ·
·
(3.187)
k ( 1 )
A
k ( 1 ) A · exp
t
exp
t .
k ( 1 )
A
k ( 1 )
B
n B (
t
) =
n A (
0
) ·
·
·
(3.188)
k ( 1 )
B
1
t .
k ( 1 ) B · k ( 1 )
exp
t
k ( 1 A exp
1
k ( 1 )
A
k ( 1 )
B
n C (
t
) =
n A (
0
) ·
+
·
·
·
B
k ( 1 )
A
(3.189)
3. Second-order chemical reaction: The product formation depends on two
reactant concentrations.
dn A
dt =
dn B
dt =−
k ( 2 )
AB
−→
k ( 2 )
AB
A
+
B
AB
·
n A ·
n B .
(3.190)
exp [ n A (
t
k ( 2 )
AB
(
n A (
0
)
n B (
0
)) ·
0
)
n B (
0
)
]
·
·
n A (
t
) =
n A (
0
) ·
n A (
exp (
t
)
. (3.191)
k ( 2 )
AB
0
) ·
n A (
0
)
n B (
0
)) ·
·
n B (
0
In the case of the reaction between identical particles it follows:
dn A
dt =−
k ( 2 )
AA
−→
k ( 2 )
AA
A
+
A
A 2
2
·
·
n A .
(3.192)
 
Search WWH ::




Custom Search