Chemistry Reference
In-Depth Information
f i
S i =
d 3 v i
t
Coll
d
i
d 3 v l d 3 v k · |
=
v l
v k | ·
σ klmn ( |
v l
v k |
,
) · (
f k ·
f l
f m ·
f n )
klmn
i
klmn
(3.141)
too.
In most cases the gain and loss terms are expressed by means of the rate
coefficient k
klmn ±
S i =
k i klmn ·
n k ·
n l
d 3 v k ·
f l
klmn ±
=
d 3 v l · |
v l
v k | ·
σ i klmn ( |
v l
v k | ) ·
f k ·
·
n k ·
n l
(3.142)
of the binary collision with k i klmn =
s 1 .
As an example, we assume collisions between two particles with mass m 1 and
m 2 . The Maxwellian velocity distribution at the same temperature T does not depend
on the internal energy states of the particles. The transformation in the center of mass
system using the reduced mass m red and the integration over the relative velocity v r
results in following analytical expression of the rate coefficient k
m 3
·
(
T
)
f
k
(
T
) =
v r ·
σ
(
v r ) =
(
v r ) ·
v r ·
σ
(
v r ) ·
dv r
m red
3 / 2
exp
m red ·
v r
=
·
·
v r ) ·
v r ·
·
σ
(
dv r
(3.143)
·
k B T
2
·
k B T
0
with the reduced mass m red = (
m 1 ·
m 2 )/(
m 1 +
m 2 )
and the relative velocity
v r = |
v 2 |
.
In similar way the corresponding rate coefficient k
v 1
(
T
)
is achieved using the
relative translational energy
1 / 2
exp
d ε r
1
k B T ·
8
ε r
k B T
k
(
T
) =
·
σ
(
ε r ) ·
ε r ·
(3.144)
π
·
m red ·
k B T
0
with the relative energy ε r =
v r .
Another simple case considers two different temperatures T 1 and T 2 of the parti-
cles with masses m 1 and m 2 , respectively. An effective temperature can be defined in
m red /
2
·
the expression of the rate coefficient k T eff .
m red
3 / 2
exp
k T eff =
m red ·
v r
·
·
σ
(
v r ) ·
v r ·
·
dv r
(3.145)
·
·
k B T eff
2
k B T eff
0
T eff = (
m 1 T 2 +
m 2 T 1 )/(
m 1 +
m 2 )
and m red = (
m 1 ·
m 2 )/(
m 1 +
m 2 )
.
Search WWH ::




Custom Search