Chemistry Reference
In-Depth Information
455. E. Stoffels, W.W. Stoffels, H. Kersten, G.H.P.M. Swinkels, and G.M.W. Kroesen. Sur-
face processes of dust particles in low pressure plasmas. Phys. Scripta , T89:168-172,
2001.
456. H. Kersten, P. Schmetz, and G.M.W. Kroesen. Surface modification of pow-
der particles by plasma deposition of thin metallic films. Surf. Coat. Technol. ,
108-109:507-512, 1998.
457. H. Kersten, G. Thieme, M. Fröhlich, D. Bojic, D.H. Tung, M. Quaas, H. Wulff, and
R. Hippler. Complex (dusty) plasmas: Examples for applications and observation of
magnetron-induced phenomena. Pure Appl. Chem. , 77:415-428, 2005.
458. H. Kersten, R. Wiese, G. Thieme, M. Fröhlich, A. Kopitov, D. Bojic, et al. Examples
forapplicationanddiagnosticsinplasma-powderinteraction. NewJ.Phys. ,5:93,2003.
CHAPTER 9
1. D.B. Graves. Plasma processing. IEEE Trans. Plasma Sci. , 22:31-42, 1994.
2. J.O. Hirschfelder, C.F. Curtis, and R.B. Bird. MolecularTheoryofGasesandLiquids ,
2nd edn. Wiley, New York, 1964.
3. E.A. Desloge. Statistical Physics . Holt, Rinehart and Winston, New York, 1966.
4. I.P. Shkarofsky, T.W. Johnston, and M.P. Bachynski. TheParticleKineticsofPlasmas .
Addison-Wesley, London, U.K., 1966.
5. S. Chapman and T.G. Cowling. The Mathematical Theory of Non-Uniform Gases .
Cambridge University Press, Cambridge, U.K., 1995.
6. C.J. Joachain. Quantum Collision Theory . North-Holland, Amsterdam, the
Netherlands, 1975.
7. V.E. Golant, A.P. Zhilinsky, and I.E. Sakharov. Fundamentals of Plasma Physics .
Wiley, New York, 1980.
8. B. Carnahan, H.A. Luther, and J.O. Wilkes. Applied Numerical Methods . Wiley,
New York, 1969.
9. http://www.reactiondesign.com/products/open/chemkin.html
10. A.R. Curtis and W.P. Sweetenham. Facsimile/Chekmat users manual, Technical
report. Computer Science and Systems Division. Harwell Laboratory, Oxfordshire,
Great Britain, U.K., 1987.
11. https://computation.llnl.gov/casc/odepack/odepack_home.html
12. F. Hempel, P.B. Davies, D. Loffhagen, L. Mechold, and J. Röpcke. Diagnostic studies
of H 2 -Ar-N 2 microwave plasmas containing methane or methanol using tunable
infrared diode laser absorption spectroscopy. Plasma Sources Sci. T. , 12:S98-S110,
2003.
13. J.P. Boeuf. Plasma display panels: physics, recent developments and key issues.
J. Phys. D Appl. Phys. , 36:R53-R79, 2003.
14. H.C. Kim, F. Iza, S.S. Yang, M. Radmilovic-Radjenovic, and J.K. Lee. Particle and
fluid simulations of low-temperature plasma discharges: Benchmarks and kinetic
effects. J. Phys. D Appl. Phys. , 38:R283-R301, 2005.
15. D. Loffhagen and F. Sigeneger. Advances in Boltzmann equation based modelling of
discharge plasmas. Plasma Sources Sci. Technol. , 18(3):034006, 2009.
16. G.M. Janssen, J. van Dijk, D.A. Benoy, M.A. Tas, K.T.A.L. Burm, W.J. Goedheer,
J.A.M. van der Mullen, and D.C. Schram. PLASIMO, a general model: I. Applied to
an argon cascaded arc plasma. Plasma Sources Sci. Technol. , 8:1-14, 1999.
17. B. Lay, R.S. Moss, S. Rauf, and M.J. Kushner. Breakdown processes in metal halide
lamps. Plasma Sources Sci. Technol. , 12:8-21, 2003.
Search WWH ::




Custom Search