Chemistry Reference
In-Depth Information
61. S. Müller, R.-J. Zahn, J. Grundmann, and M. Langner. Plasma treatment of
aerosols and odours. In 3rd International Workshop on Microplasmas, Greifswald ,
Kiebu-Druck GmbH. Germany, pp. 121, 2006.
62. S. Müller and R.-J. Zahn. Air pollution control by non-thermal plasma. Contrib.
Plasma. Phys. , 47:520-529, 2007.
63. C.K. Rhodes. Excimer Lasers , 2nd edn. Springer, Berlin, Germany, 1984.
64. D. Basting and U. Stamm. The development of excimer laser technology—History
and future prospects. Z. Phys. Chem. , 215:1575-1599, 2001.
65. B. Eliasson and U. Kogelschatz. UV excimer radiation from dielectric-barrier
discharges. Appl. Phys. B , 46:299-303, 1988.
66. B. Gellert and U. Kogelschatz. Generation of excimer emission in dielectric barrier
discharges. Appl. Phys. B , 52:14-21, 1991.
67. U. Kogelschatz. Excimer lamps: History, discharge physics, and industrial
applications. Proc. SPIE , 5483:272-286, 2004.
68. A. Sosnin, T. Oppenländer, and V.F. Tarasenko. Applications of capacitive and barrier
discharge excilamps in photoscience. J. Photochem. Photobiol. C Photochem. Rev. ,
7:145-163, 2006.
69. J.P. Boeuf. Plasma display panels: physics, recent developments and key issues.
J. Phys. D Appl. Phys. , 36:R53-R79, 2003.
70. Y. Salamero, H. Asselman, A. Birot, H. Brunet, J. Galy, and P. Millet. Multiphoton
excitation and frequency tripling in xenon. J. Phys. B At. Mol. Phys. , 16:2971-2979,
1983.
71. F. Adler and S. Müller. Formation and decay mechanisms of excimer molecules in
dielectric barrier discharges. J. Phys. D Appl. Phys. , 33:1705-1715, 2000.
72. S. Gortchakov, D. Loffhagen, and R. Winkler. The homogeneity of a stabilized
discharge-pumped XeCl laser. Appl. Phys. B , 66:313-321, 1998.
73. A. Schwabedissen, D. Loffhagen, T. Hammer, and W. Bötticher. Experimental verifi-
cation of a zero-dimensional model of the kinetics of XeCl discharges by XeCl (
B
)
-,
-density measurements. Appl. Phys. B , 61:175-186, 1995.
74. Th. Hammer. Investigation of XeCl vibrational and quenching kinetics: Numerical
simulation of gain and laser spectra in discharge-pumped oscillators. Appl. Phys. B ,
58:505-513, 1994.
75. R. Waser, ed. Advanced Electronic Materials and Novel Devices , 2nd edn.,
Wiley-VCH, Weinheim, Germany, 2005.
76. B. Bhushan, ed. Handbook of Nanotechnology . Springer, Berlin, Germany, 2004.
77. W. Fahrner. Nanotechnologie und Nanoprozesse . Springer, Berlin, Germany, 2003.
78. H. Deutsch, H. Kersten, and A. Rutscher. Basic mechanisms in plasma etching.
Contrib. Plasma Phys. , 29:263, 1989.
79. N. Marchack and J.P. Chang. Perspectives in nanoscale plasma etching: What are the
ultimate limits? J. Phys D: Appl. Phys. , 44:174011, 2011.
80. J.W. Coburn. Some Fundamental Aspects of Plasma Assisted Etching . Springer,
Berlin, Germany, 2000.
81. H. Abe, M. Yoneda, and N. Fujiwara. Developments of Plasma Etching Technology
for Fabricating Semiconductor Devices. Jpn. J. Appl. Phys. , 47:1435-1455, 2008.
82. P. Singer. Semicond. Int. , 19:152, 1996.
83. T.E.F.M. Standaert, M. Schaepkens, N.R. Rueger, P.G.M. Sebel, G.S. Oehrlein, and
J.M. Cook. High density fluorocarbon etching of silicon in an inductively coupled
plasma: Mechanism of etching through a thick steady state fluorocarbon layer. J.
Vac. Sci. Technol. , A16:239-249, 1998.
XeCl (
C
)
-, and Xe 2 Cl (
C
)
Search WWH ::




Custom Search